Ванадиевые проточные аккумуляторы: модели динамики и измерений

Обложка

Цитировать

Полный текст

Аннотация

Статья знакомит читателей с ванадиевыми проточными аккумуляторами, принципами их работы и моделями в пространстве состояний. Ванадиевые проточные аккумуляторы (ВПА) -- перспективная технология стационарных накопителей электрической энергии, имеющая ряд преимуществ перед традиционными накопителями на основе литий-ионных батарей. Одна из особенностей ВПА -- наличие гидравлической системы с насосами, обеспечивающими непрерывную подачу электролита из резервуаров, где он хранится, в стек, где происходят электрохимические реакции. Это влечёт за собой необходимость построения динамических моделей таких систем, которые используются для задач мониторинга и управления. В статье приводятся основные модели динамики ванадиевых аккумуляторов с сосредоточенными параметрами, модели доступных измерений, анализируются их особенности. Кроме того, предлагаются новые модели, позволяющие более точно описывать изменение концентраций в процессе длительной работы ВПА.

Об авторах

Станислав Дмитриевич Богданов

Сколковский институт науки и технологий

Email: s.bogdanov@skoltech.ru
Москва

Сергей Эрнестович Парсегов

Сколковский институт науки и технологий, ФГБУН Институт проблем управления им. В.А. Трапезникова РАН

Email: s.e.parsegov@gmail.com
Москва

Михаил Александрович Пугач

Сколковский институт науки и технологий

Email: m.pugach@skoltech.ru
Москва

Список литературы

  1. AARON D., TANG Z., PAPANDREW A., ZAWODZINSKI T.Polarization curve analysis of all-vanadium redox flowbatteries // Journal Of Applied Electrochemistry. – 2011. –Vol. 41. – P. 1175–1182.
  2. BAROTE L., MARINESCU C. A new control method forVRB SOC estimation in stand-alone wind energy systems //Int. Conf. On Clean Electrical Power, (ICCEP-2009). – 2009. –P. 253–257.
  3. BARTON J., BRUSHETT F. A one-dimensional stack modelfor redox flow battery analysis and operation // Batteries. –2019. – Vol. 5.
  4. BHATTACHARJEE A., ROY A., BANERJEE N., PATRA S.,SAHA H. Precision dynamic equivalent circuit model of aVanadium Redox Flow Battery and determination of circuitparameters for its optimal performance in renewable energyapplications // Journal Of Power Sources. – 2018. – Vol. 396. –P. 506–518.
  5. BOGDANOV S., PUGACH M., PARSEGOV S., VLASOV V.,IBANEZ F., STEVENSON K., VOROBEV P. Dynamicmodeling of vanadium redox flow batteries: Practicalapproaches, their applications and limitations // Journal OfEnergy Storage. – 2023. – Vol. 57, 106191.
  6. CHAHWAN J., ABBEY C., JOOS G. VRB modelling forthe study of output terminal voltages, internal losses andperformance // IEEE Canada Electrical Power Conference(EPC-2007). – 2007. – P. 387–392.
  7. CHANG W. The State of Charge Estimating Methods forBattery: A Review // ISRN Applied Mathematics. – 2013. –P. 1–7.
  8. CHEN Y., XU Z., WANG C., BAO J., KOEPPEL B., YAN L.,GAO P., WANG W. Analytical modeling for redox flow batterydesign // Journal Of Power Sources. – 2021. – Vol. 482. –P. 228817.
  9. CLEMENTE A., CECILIA A., COSTA-CASTELLO R.Online state of charge estimation for a vanadium redox flowbattery with unequal flow rates // Journal Of Energy Storage. –2023. – Vol. 60. – P. 106503.
  10. CLEMENTE A., COSTA-CASTELLO R. Redox flowbatteries: A literature review oriented to automatic control //Energies. – 2020. – Vol. 13. – P. 1–31.
  11. CLEMENTE A., MONTIEL M., BARRERAS F., LOZANO A.,COSTA-CASTELLO R. Vanadium Redox Flow Battery State ofCharge Estimation Using a Concentration Model and a SlidingMode Observer // IEEE Access. – 2021. – Vol. 9. –P. 72368–72376.
  12. COLTHORPE A. China’s largest solar-plus-flow batteryproject will be accompanied by vrfb gigafactory [Элек-тронный ресурс] // Energy Storage News. – URL:https://www.energy-storage.news/chinas-largest-solar-plus-flow-battery-project-will-be-accompanied-by-vrfb-gigafactory(дата обращения: 04.04.2022).
  13. CORCUERA S., SKYLLAS-KAZACOS M. State-of-ChargeMonitoring and Electrolyte Rebalancing Methods for theVanadium Redox Flow Battery // European ChemicalBulletin. – 2012. – Vol. 1. – P. 511–519.
  14. JIENKULSAWAD P., JIRABOVORNWISUT T., CHEN Y.,ARPORNWICHANOP A. Improving the Performance of anAll-Vanadium Redox Flow Battery under Imbalance Conditions:Online Dynamic Optimization Approach // ACS SustainableChemistry And Engineering. – 2020. – Vol. 8. – P. 13610–13622.
  15. KAZACOS M., CHENG M., SKYLLAS-KAZACOS M.Vanadium redox cell electrolyte optimization studies // JournalOf Applied Electrochemistry. – 1990. – Vol. 20. – P. 463–467.
  16. KHAKI B., DAS P. An equivalent circuit model for VanadiumRedox Batteries via hybrid extended Kalman filter and Particlefilter methods // Journal Of Energy Storage. – 2021. – Vol. 39. –P. 102587.
  17. KNEHR K., AGAR E., DENNISON C., KALIDINDI A.,KUMBUR E. A Transient Vanadium Flow Battery ModelIncorporating Vanadium Crossover and Water Transportthrough the Membrane // Journal Of The ElectrochemicalSociety. – 2012. – Vol. 159. – P. A1446–A1459.
  18. KONIG S., SURIYAH M., LEIBFRIED T. Validating andimproving a zero-dimensional stack voltage model of theVanadium Redox Flow Battery // Journal Of Power Sources. –2018. – Vol. 378. – P. 10–18.
  19. LI B., LUO Q., WEI X., NIE Z., THOMSEN E., CHEN B.,SPRENKLE V., WANG W. Capacity decay mechanism ofmicroporous separator-based all-vanadium redox flow batteriesand its recovery // ChemSusChem. – 2014. – Vol. 7. –P. 577–584.
  20. MOHAMED M., AHMAD H., SEMAN M., RAZALI S.,NAJIB M. Electrical circuit model of a vanadium redox flowbattery using extended Kalman filter // Journal Of PowerSources. – 2013. – Vol. 239. – P. 284–293.
  21. MUNOZ C., DEWAGE H., YUFIT V., BRANDON N. A UnitCell Model of a Regenerative Hydrogen-Vanadium Fuel Cell //Journal Of The Electrochemical Society. – 2017. – Vol. 164. –P. F1717–F1732.
  22. NGAMSAI K., ARPORNWICHANOP A. Measuring the stateof charge of the electrolyte solution in a vanadium redox flowbattery using a four-pole cell device // Journal Of PowerSources. – 2015. – Vol. 298. – P. 150–157.
  23. OH K., WON S., JU H. A comparative study of speciesmigration and diffusion mechanisms in all-vanadium redoxflow batteries // Electrochimica Acta. – 2015. – Vol. 181. –P. 238–247.
  24. PUGACH M., KONDRATENKO M., BRIOLA S., BISCHI A.Zero dimensional dynamic model of vanadium redox flowbattery cell incorporating all modes of vanadium ionscrossover // Applied Energy. – 2018. – Vol. 226. – P. 560–569.
  25. PULESTON T., CECILIA A., COSTA-CASTELLO R.,SERRA M. Vanadium redox flow batteries real-time Stateof Charge and State of Health estimation under electrolyteimbalance condition // Journal Of Energy Storage. – 2023. –Vol. 68. – P. 107666.
  26. SEAMAN A., DAO T., MCPHEE J. A survey of mathematics-based equivalent-circuit and electrochemical battery models forhybrid and electric vehicle simulation // Journal Of PowerSources. – 2014. – Vol. 256. – P. 410–423.
  27. SEEPANA M., SAMUDRALA S., SURESH P., VOORADI R.Unit Cell Modelling and Simulation of All Vanadium RedoxFlow Battery // Chemical Product And Process Modeling. –2018. – Vol. 13. – P. 1-13.
  28. SHAH A., TANGIRALA R., SINGH R., WILLS R., WALSH F.A Dynamic Unit Cell Model for the All-Vanadium FlowBattery // Journal Of The Electrochemical Society. – 2011. –Vol. 158. – P. A671.
  29. SHI Y., WEI Z., LIU H., ZHAO J. Dynamic modeling oflong-term operations of vanadium/air redox flow battery withdifferent membranes // Journal Of Energy Storage. – 2022. –Vol. 50. – P. 104171.
  30. SKYLLAS-KAZACOS M., CHAKRABARTI M.,HAJIMOLANA S., MJALLI F., SALEEM M. Progressin flow battery research and development // Journal Of TheElectrochemical Society. – 2011. – Vol. 158. – P. R55.
  31. SKYLLAS-KAZACOS M., GOH L. Modeling of vanadium iondiffusion across the ion exchange membrane in the vanadiumredox battery // Journal Of Membrane Science. – 2012. –Vol. 399. – P. 43–48.
  32. SKYLLAS-KAZACOS M., KAZACOS M. State of chargemonitoring methods for vanadium redox flow battery control //Journal Of Power Sources. – 2011. – Vol. 196. – P. 8822–8827.
  33. TANG A., BAO J., SKYLLAS-KAZACOS M. Dynamicmodelling of the effects of ion diffusion and side reactions onthe capacity loss for vanadium redox flow battery // Journal OfPower Sources. – 2011. – Vol. 196. – P. 10737–10747.
  34. TANG A., BAO J., SKYLLAS-KAZACOS M. Thermalmodelling of battery configuration and self-discharge reactionsin vanadium redox flow battery // Journal Of Power Sources. –2012. – Vol. 216. – P. 489–501.
  35. TANG A., BAO J., SKYLLAS-KAZACOS M. Studies onpressure losses and flow rate optimization in vanadium redoxflow battery // Journal Of Power Sources. – 2014. – Vol. 248. –P. 154–162.
  36. TANG A., MCCANN J., BAO J., SKYLLAS-KAZACOS M.Investigation of the effect of shunt current on battery efficiencyand stack temperature in vanadium redox flow battery //Journal Of Power Sources. – 2013. – Vol. 242. – P. 349–356.
  37. TROVO A., MARINI G., SUTTO A., ALOTTO P.,GIOMO M., MORO F., GUARNIERI M. Standby thermalmodel of a vanadium redox flow battery stack with crossoverand shunt-current effects // Applied Energy. – 2019. –Vol. 240. – P. 893–906.
  38. TROVO A., SACCARDO A., GIOMO M., GUARNIERI M.Thermal modeling of industrial-scale vanadium redox flowbatteries in high-current operations // Journal Of PowerSources. – 2019. – Vol. 424. – P. 204–214.
  39. VYNNYCKY M. Analysis of a model for the operation of avanadium redox battery // Energy. – 2011. – Vol. 36. – P. 2242–2256.
  40. WANDSCHNEIDER F., ROHM S., FISCHER P.,PINKWART K., TUBKE J., NIRSCHL H. A multi-stacksimulation of shunt currents in vanadium redox flow batteries //Journal Of Power Sources. – 2014. – Vol. 261. – P. 64–74.
  41. WANG H., POURMOUSAVI S., SOONG W., ZHANG X.,ERTUGRUL N. Battery and energy management systemfor vanadium redox flow battery: A critical review andrecommendations // Journal Of Energy Storage. – 2023. –Vol. 58.
  42. WANG Q., QU Z., JIANG Z., YANG W. Numerical study onvanadium redox flow battery performance with non-uniformlycompressed electrode and serpentine flow field // AppliedEnergy. – 2018. – Vol. 220. – P. 106–116.
  43. WANG T., FU J., ZHENG M., YU Z. Dynamic control strategyfor the electrolyte flow rate of vanadium redox flow batteries //Applied Energy. – 2018. – Vol. 227. – P. 613–623.
  44. WEAVER J. World’s largest battery: 200MW/800MWhvanadium flow battery —site work ongoing // Electrek. – 2017
  45. WEI Z., JET K., WAI N., MARIANA T., SKYLLAS-KAZACOS M. Adaptive estimation of state of charge andcapacity with online identi fi ed battery model for vanadiumredox fl ow battery // Journal Of Power Sources. – 2016. –Vol. 332. – P. 389–398.
  46. WU X., YUAN X., WANG Z., LIU J., HU Y., DENG Q.,YIN X., ZHOU Q., ZHOU W., WU Y. Electrochemicalperformance of 5 kW all-vanadium redox flow battery stack witha flow frame of multi-distribution channels // Journal Of SolidState Electrochemistry. – 2017. – Vol. 21. – P. 429–435.
  47. XIONG B., YANG Y., TANG J., LI Y., WEI Z., SU Y.,ZHANG Q. An Enhanced Equivalent Circuit Model ofVanadium Redox Flow Battery Energy Storage SystemsConsidering Thermal Effects // IEEE Access. – 2019. – Vol. 7. –P. 162297–162308.
  48. XIONG B., ZHAO J., SU Y., WEI Z., SKYLLAS-KAZACOS M. State of Charge Estimation of Vanadium RedoxFlow Battery Based on Sliding Mode Observer and DynamicModel Including Capacity Fading Factor // IEEE Trans. OnSustainable Energy. – 2017. – Vol. 8. – P. 1658–1667.
  49. XU Q., ZHAO T., LEUNG P. Numerical investigations of flowfield designs for vanadium redox flow batteries // AppliedEnergy. – 2013. – Vol. 105. – P. 47–56.
  50. YANG X., YE Q., CHENG P., ZHAO T. Effects of the electricfield on ion crossover in vanadium redox flow batteries //Applied Energy. – 2015. – Vol. 145. – P. 306–319.
  51. YIN C., GAO Y., XIE G., LI T., TANG H. Three dimensionalmulti-physical modeling study of interdigitated flow field inporous electrode for vanadium redox flow battery // JournalOf Power Sources. – 2019. – Vol. 438. – P. 227023.
  52. YOU X., YE Q., CHENG P. The Dependence of MassTransfer Coefficient on the Electrolyte Velocity in Carbon FeltElectrodes: Determination and Validation // Journal Of TheElectrochemical Society. – 2017. – Vol. 164. – P. E3386–E3394.
  53. ZHANG B., LEI Y., BAI B., XU A., ZHAO T. A two-dimensional mathematical model for vanadium redox flowbattery stacks incorporating nonuniform electrolyte distributionin the flow frame // Applied Thermal Engineering. – 2019. –Vol. 151. – P. 495–505.
  54. ZHANG Y., ZHAO J., WANG P., SKYLLAS-KAZACOS M.,XIONG B., BADRINARAYANAN R. A comprehensiveequivalent circuit model of all-vanadium redox flow battery forpower system analysis // Journal Of Power Sources. – 2015. –Vol. 290. – P. 14–24.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).