Деградация проводимости низкоразмерных наноструктурированных полупроводниковых слоев при длительном протекании постоянного тока
- Авторы: Кочкуров Л.А.1, Волчков С.С.2, Васильков М.Ю.2, Плугин И.А.1, Климова А.А.1, Зимняков Д.А.1
-
Учреждения:
- Саратовский государственный технический университет имени Гагарина Ю. А.
- Саратовский филиал Института радиотехники и электроники имени В. А. Котельникова РАН
- Выпуск: Том 24, № 1 (2024)
- Страницы: 41-51
- Раздел: Нанотехнологии, наноматериалы и метаматериалы
- URL: https://ogarev-online.ru/1817-3020/article/view/265330
- DOI: https://doi.org/10.18500/1817-3020-2024-24-1-41-51
- EDN: https://elibrary.ru/AUQNBD
- ID: 265330
Цитировать
Полный текст
Аннотация
Ключевые слова
Об авторах
Леонид Алексеевич Кочкуров
Саратовский государственный технический университет имени Гагарина Ю. А.410054, Саратов, ул. Политехническая, 77
Сергей Сергеевич Волчков
Саратовский филиал Института радиотехники и электроники имени В. А. Котельникова РАН
ORCID iD: 0000-0002-3928-8836
Scopus Author ID: 57202159944
ResearcherId: B-7770-2018
410019 Саратов, ул. Зеленая, д. 38
Михаил Юрьевич Васильков
Саратовский филиал Института радиотехники и электроники имени В. А. Котельникова РАН
ORCID iD: 0000-0003-1579-1194
Scopus Author ID: 56451042200
ResearcherId: M-6825-2016
410019 Саратов, ул. Зеленая, д. 38
Илья Анатольевич Плугин
Саратовский государственный технический университет имени Гагарина Ю. А.
ORCID iD: 0000-0002-1066-1596
Scopus Author ID: 57200115169
ResearcherId: E-8700-2019
410054, Саратов, ул. Политехническая, 77
Анжелика Андреевна Климова
Саратовский государственный технический университет имени Гагарина Ю. А.
ORCID iD: 0009-0000-7237-2979
410054, Саратов, ул. Политехническая, 77
Дмитрий Александрович Зимняков
Саратовский государственный технический университет имени Гагарина Ю. А.410054, Саратов, ул. Политехническая, 77
Список литературы
- Witkiewicz Z., Jasek K., Grabka M. Semiconductor gas sensors for detecting chemical warfare agents and their simulants. Sensors, 2023, vol. 23, iss. 6, article no. 3272. https://doi.org/10.3390/s23063272
- Qin Q., Olimov D., Yin L. Semiconductor-type gas sensors based on γ-Fe2O3 nanoparticles and its derivatives in conjunction with SnO2 and graphene. Chemosensors, 2022, vol. 10, iss. 7, article no. 267. https://doi.org/10.3390/chemosensors10070267
- Sharma A., Ahmed A., Singh A., Oruganti S. K., Khosla A., Arya S. Review–Recent advances in tin oxide nanomaterials as electrochemical/chemiresistive sensors. J. Electrochem. Soc., 2021, vol. 168, iss. 2, pp. 027505. https://doi.org/10.1149/1945-7111/abdee8
- Chen N., Deng D., Li Y., Xing X., Liu X., Xiao X., Wang Y. The xylene sensing performance of WO3 decorated anatase TiO2 nanoparticles as a sensing material for a gas sensor at a low operating temperature. RSC Adv, 2016, vol. 6, iss. 55, pp. 49692–49701. https://doi.org/C6RA09195D
- Feiyu D., Wang Y. Transition metal oxide nanostructures: Premeditated fabrication and applications in electronic and photonic devices. J. Mater. Sci., 2018, vol. 53, iss. 6, pp. 4334–4359. https://doi.org/10.1007/s10853-017-1862-3
- Sudarshan S., Das S., Ray S. K. Progress in group-IV semiconductor nanowires based photonic devices. Appl. Phys. A, 2023, vol. 129, iss. 3, article no. 216. https://doi.org/10.1007/s00339-023-06483-7
- Baldini E., Palmieri T., Pomarico E. Auböck G., Chergui M. Clocking the ultrafast electron cooling in anatase titanium dioxide nanoparticles. ACS Photonics, 2018, vol. 5, iss. 4, pp. 1241–1249. https://doi.org/10.1021/acsphotonics.7b00945
- Song Y., You K., Chen Y., Zhao J., Jiang X., Ge Y., Wang Y., Zheng J., Xing C., Zhang H. Lead monoxide: A promising two-dimensional layered material for applications in nonlinear photonics in the infrared band. Nanoscale, 2019, vol. 11, iss. 26, pp. 12595–12602. https://doi.org/10.1039/c9nr03167g
- Li J., Chen C., Liu S., Lu J., Goh W. P., Fang H., Qiu Z., Tian B., Chen Z., Yao C., Liu W., Yan H., Yu Y., Wang D., Wang Y., Lin M., Su Ch., Lu J. Ultrafast electrochemical expansion of black phosphorus toward high-yield synthesis of few-layer phosphorene. Chem. Mater., 2018, vol. 30, iss. 8, pp. 2742–2749. https://doi.org/10.1021/acs.chemmater.8b00521
- Terna A. D., Elemike E. E., Mbonu J. I., Osafile O. E., Ezeani R. O. The future of semiconductors nanoparticles: Synthesis, properties and applications. Mater. Sci. Eng. B, 2021, vol. 272, iss. 2, pp. 115363. https://doi.org/10.1016/j.mseb.2021.115363
- Collins G., Lonergan A., McNulty D., Glynn C., Buckley D., Hu C., O’Dwyer C. Semiconducting metal oxide photonic crystal plasmonic photocatalysts. Adv. Mater. Interfaces, 2020, vol. 7, iss. 2, pp. 1901805. https://doi.org/10.1002/admi.201901805
- Morris A. J., Monserrat B. Optical absorption driven by dynamical symmetry breaking in indium oxide. Phys. Rev. B, 2018, vol. 98, iss. 16, pp. 161203(R). https://doi.org/10.1103/PhysRevB.98.161203
- Schmidt-Grund R., Krauß H., Kranert C., Bonholzer M., Grundmann M. Temperature dependence of the dielectric function in the spectral range (0.5–8.5) eV of an In2O3 thin film. Appl. Phys. Lett., 2014, vol. 105, iss. 11, pp. 111906. https://doi.org/10.1063/1.4896321
- Zimnyakov D. A., Volchkov S. S., Vasilkov M. Y., Plugin I. A., Varezhnikov A. S., Gorshkov N. V., Ushakov A. V., Tokarev A. S., Tsypin D. V., Vereshagin D. A. Semiconductor-to-Insulator Transition in Inter-Electrode Bridge-like Ensembles of Anatase Nanoparticles under a Long-Term Action of the Direct Current. Nanomaterials, 2023, vol. 13, iss. 9, article no. 1490. https://doi.org/10.3390/nano13091490
- Gallyamov S. R., Mel’chukov S. A. Percolation model of conductivity of two-phase lattice: Theory and computer experiment. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2010, no. 4, pp. 112–122 (in Russian). https://doi.org/10.20537/vm100413
- Gingold D. B., Lobb C. J. Percolative conduction in three dimensions. Phys. Rev. B, 1990, vol. 42, iss. 13, pp. 8220–8224. https://doi.org/10.1103/PhysRevB.42.8220
- Normand J.-M., Herrmann H. J. Precise determination of the conductivity exponent of 3D percolation using “Percola”. International Journal of Modern Phys., 1996, vol. 6, iss. 6, pp. 813–817. https://doi.org/10.48550/arXiv.cond-mat/9602081
- Clerc J.-M., Podolskiy V. A., Sarychev A. K. Precise determination of the conductivity exponent of 3D percolation using exact numerical renormalization. The European Phys. J. B, 2000, vol. 15, iss. 3, pp. 507–516. https://doi.org/10.1007/s100510051153
- Kozlov B., Laguës M. Universality of 3D percolation exponents and first-order corrections to scaling for conductivity exponents. Physica A, 2010, vol. 389, iss. 23, pp. 5339–5346. https://doi.org/10.1016/j.physa.2010.08.002
- Zekri L., Kaiss A., Clerc J.-P., Porterie B., Nouredine Z. 2D-to-3D percolation crossover of metal–insulator composites. Phys. Lett. A, 2011, vol. 375, iss. 3, pp. 346–351. https://doi.org/10.1016/j.physleta.2010.11.043
Дополнительные файлы
