Broadband single- and double-layer composite nanoporous coatings based on SiO2@CuO(ZnO) to increase glass transparency

Capa

Citar

Texto integral

Resumo

Background and Objectives: Using sol-geltechnology, silicate mesoporous single layer coatings based on SiO2@CuO(ZnO) compositions were obtained to increase glass transparency. The phase composition and properties of powders obtained from dried sols were studied. The optical properties of the obtained silicon oxide sols were explored by the turbidimetric method. To identify the characteristics of gelation and coagulation, a spectrophotometric study of the silicon oxide sol was carried out. The resulting sols were applied to glass by adsorption from solution (dip-coating) at room temperature (23 ± 10°C). The rate of extraction from the solution varied from 105 to 160 mm/min. Glasses with coatings applied to both sides were dried at room temperature until a film formed and subjected to heat treatment in a muffle furnace at a temperature of 500°C. At the moment of annealing, the decomposition of copper and zinc salts and the formation of a composite composition of SiO2@CuO and SiO2@ZnO films occurred. Spectral measurements of the transmittance and reflection of glasses with single layer mesoporous coatings were carried out in the range of 400–800 nm. Materials and Methods: To obtain sols with copper and zinc, metal salts Zn(CH3CO2)2 ·2H2O and (CH3COO)2Cu·H2O (6% or 10% by weight SiO2) were added to the SiO2 sol. Using a magnetic stirrer, the resulting mixtures were stirred at room temperature for 15 ± 0.5 min. To study the optical properties of the sols, a base SiO2 sol and SiO2 sols with the addition of zinc acetate and copper acetate (6% and 10% by weight of silicon dioxide) were prepared. After heat treatment, the thickness of the applied coatings was determined by contact method using a Dektac-150 profilometer. It was determined that the thickness of the coatings on glass varied from(95 ± 20) to (137 ± 7) nm at drawing speeds of 105 and 160 mm/min, respectively. Results: The developed methods for producing mesoporous silicate coatings on glass have ensured the creation of homogeneous coatings with good adhesion, uniform thickness and roughness. The results of measuring the transparency spectra of glass with a single layer coating of sols with different compositions and drawing rates have been presented. It has been shown that double-sided single-layer mesoporous SiO2@CuO(ZnO) composite coatings with different compositions demonstrate an increase in glass transparency by 2-3% in a wide optical range of 400–1000 nm. Conclusion: The proposed composition of compositions in single layer film structures makes it possible to solve the problem of broadband antireflection of glasses in a wide range of optical wavelengths (400–1000 nm). 

Sobre autores

Natalya Malofeeva

Yuri Gagarin State Technical University of Saratov

ORCID ID: 0009-0004-2094-7856
77, Politechnicheskaya str., Saratov, 410054, Russia

Ilya Mikhailov

Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences

ORCID ID: 0000-0003-4231-0130
38, Zelenaya Str., Saratov 410019, Russia

Sergei Volchkov

Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences

ORCID ID: 0000-0002-3928-8836
Scopus Author ID: 57202159944
Researcher ID: B-7770-2018
38, Zelenaya Str., Saratov 410019, Russia

Mikhail Vasilkov

Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences

ORCID ID: 0000-0003-1579-1194
Scopus Author ID: 56451042200
Researcher ID: M-6825-2016
38, Zelenaya Str., Saratov 410019, Russia

Igor Kosobudsky

Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences

Scopus Author ID: 6603237479
38, Zelenaya Str., Saratov 410019, Russia

Nickolai Ushakov

Saratov Branch of the Institute of RadioEngineering and Electronics of Russian Academy of Sciences

ORCID ID: 0000-0003-1647-2726
Scopus Author ID: 55406725200
Researcher ID: A-6080-2014
38, Zelenaya Str., Saratov 410019, Russia

Bibliografia

  1. Ушаков Н. М., Кособудский И. Д., Васильков М. Ю., Михайлов И. Н. Оптические просветляющие матричные и пористые метаматериалы для устройств оптоэлектроники // Радиотехника и электроника. 2022. Т. 67, № 10. С. 1023–1029. https://doi.org/10.31857/S0033849422100151
  2. Гуляев Ю. В., Лагарьков А. Н., Никитов С. А. Метаматериалы: фундаментальные исследования и перспективы применения // Вестн. РАН. 2008. Т. 78, № 5. С. 438–457.
  3. Bonilla R. S., Hoex B., Hamer P., Wilshaw P. R. Dielectric surface passivation for silicon solar cells: A review // Phys. Status Solidi A. 2017. Vol. 214, iss. 7. P. 1700293–1700323. https://doi.org/10.1002/pssa.201700293
  4. Scott B. J., Wirnsberger G., Stucky G. D. Mesoporous and Mesostructured Materials for Optical Applications // Chem. Mater. 2001. Vol. 13, №. 10. P. 3140–3150. https://doi.org/10.1021/cm0110730
  5. Sun J., Cui X., Zhang C., Zhang C., Dinga R., Xu Y. A broadband antireflective coating based on a double-layer system containing mesoporous silica and nanoporous silica // J. Mater. Chem. C. 2015. Vol. 3. P. 7187–7194.
  6. AlOthman Z. A. A Review: Fundamental Aspects of Silicate Mesoporous Materials // Materials. 2012. Vol. 5, iss. 12. P. 2874–2902. https://doi.org/10.3390/ma5122874
  7. Еськин С. В., Ушаков Н. М. Неструктурированные антиотражающие покрытия на основе аморфного диоксида кремния для силикатного стекла и фотоэлектрических преобразователей // Нелинейный мир. 2014. Т. 12, № 2. С. 59–60.
  8. Еськин С. В., Кособудский И. Д., Жималов А. Б., Ушаков Н. М., Кочубей В. И., Захаревич А. М., Горбачев И. А., Горин Д. А., Кульбацкий Д. М. Просветляющие покрытия на основе аморфных субмикронных частиц диоксида кремния для силикатного стекла: получение, морфология поверхности, оптические свойства // Российские нанотехнологии. 2013. Т. 8, № 11–12. C. 35–41.
  9. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика : учебное пособие для вузов : в 10 т. Т. 8 : Электродинамика сплошных сред. 3-е изд., исправл. М. : Наука, 1992. С. 582–583.
  10. Слепнева Л. М., Горбунова В. А., Слепнев Г. Е. Расчет размеров частиц гидрозоля диоксида титана // Science & Technique. 2014. № 14. С. 55–59.
  11. Борн М., Вольф Э. Основы оптики. М. : Наука, 1970. 856 с.
  12. Xu G., Zhang J., Zang X., Sugihara O., Zhao H., Cai B. 0.1–20 THz ultra-broadband perfect absorber via a flat multi-layer structure // OPTICS EXPRESS. 2016. Vol. 24, № 20. P. 23177–23185. http://dx.doi.org/10.1364/OE.24.023177

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».