Analysis of three non-identical Josephson junctions by the method of Lyapunov exponent charts
- Авторлар: Kuznetsov A.P.1, Sataev I.R.1, Sedova Y.V.1
-
Мекемелер:
- Saratov Branch of Kotel’nikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences
- Шығарылым: Том 23, № 1 (2023)
- Беттер: 4-13
- Бөлім: Articles
- URL: https://ogarev-online.ru/1817-3020/article/view/250722
- DOI: https://doi.org/10.18500/1817-3020-2023-23-1-4-13
- EDN: https://elibrary.ru/AKMGFG
- ID: 250722
Дәйексөз келтіру
Толық мәтін
Аннотация
Авторлар туралы
Alexander Kuznetsov
Saratov Branch of Kotel’nikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences38, Zelenaya Str., Saratov 410019, Russia
Igor Sataev
Saratov Branch of Kotel’nikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences38, Zelenaya Str., Saratov 410019, Russia
Yuliya Sedova
Saratov Branch of Kotel’nikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences38, Zelenaya Str., Saratov 410019, Russia
Әдебиет тізімі
- Пиковский А., Розенблюм М., Куртс Ю. Синхронизация. Фундаментальное нелинейное явление. М. : Техносфера, 2003. 508 с. (Сер. Мир физики и техники).
- Askerzade I., Bozbey A., Cantürk M. Modern aspects of Josephson dynamics and superconductivity electronics. Springer International Publishing. 2017. 186 p.
- Likharev K. K. Dynamics of Josephson Junctions and Circuits. New York : Gordon and Breach, 1986.
- Wiesenfeld K., Colet P., Strogatz S. H. Synchronization Transitions in a Disordered Josephson Series Array // Phys. Rev. Lett. 1996. Vol. 76, № 3. P. 404–407. https://doi.org/10.1103/PhysRevLett.76.404
- Wiesenfeld K., Colet P., Strogatz S. H. Frequency locking in Josephson arrays: Connection with the Kuramoto model // Phys. Rev. E. 1998. Vol. 57. P. 1563–1569. https://doi.org/10.1103/PhysRevE.57.1563
- Wiesenfeld K., Swift J. W. Averaged equations for Josephson junction series arrays // Phys. Rev. E. 1995. Vol. 51, iss. 2. P. 1020–1025. https://doi.org/10.1103/PhysRevE.51.1020
- Nichols S., Wiesenfeld K. Ubiquitous neutral stability of splay-phase states // Physical Review A. 1992. Vol. 45, № 12. P. 8430–8435. https://doi.org/10.1103/PhysRevA.45.8430
- Filatrella G., Pedersen N. F., Wiesenfeld K. High-Q cavity-induced synchronization in oscillator arrays // Phys. Rev. E. 2000. Vol. 61, iss. 3. P. 2513–2518. https://doi.org/10.1103/PhysRevE.61.2513
- Jain A. K., Likharev K. K., Lukens J. E., Sauvageau J. E. Mutual phase-locking in Josephson junction arrays // Phys. Rep. 1984. Vol. 109. P. 310–426. https://doi.org/10.1016/0370-1573(84)90002-4
- Dana S. K., Sengupta D. C., Edoh K. D. Chaotic dynamics in Josephson junction // IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. 2001. Vol. 48, № 8. P. 990–996. https://doi.org/10.1109/81.940189
- Valkering T. P., Hooijer C. L. A., Kroon M. F. Dynamics of two capacitively coupled Josephson junctions in the overdamped limit // Physica D. 2009. Vol. 135, iss. 1–2. P. 137–153. https://doi.org/10.1016/S0167-2789(99)00116-5
- Abdullaev F. Kh., Abdumalikov A. A., Jr., Buisson O., Tsoy E. N. Phase-locked states in the system of two capacitively coupled Josephson junctions // Phys. Rev. B. 2000. Vol. 62, iss. 10. P. 6766–6773. https://doi.org/10.1103/PhysRevB.62.6766
- Kurt E., Canturk M. Chaotic dynamics of resistively coupled DC-driven distinct Josephson junctions and the effects of circuit parameters // Physica D. 2009. Vol. 238, № 22. P. 2229–2237. https://doi.org/10.1016/j.physd.2009.09.005
- Kurt E., Canturk M. Bifurcations and Hyperchaos from a DC Driven Nonidentical Josephson Junction System // Int. J. Bifur. Chaos. 2010. Vol. 20, № 11. P. 3725–374 https://doi.org/10.1142/S021812741002801X
- Stork M., Kurt E. Control system approach to the dynamics of nonidentical Josephson junction systems // 2015 International Conference on Applied Electronics (AE). IEEE. 2015. P. 233–238.
- Celík K., Kurt E., Stork M. Can non-identical josephson junctions be synchronized? // 2017 IEEE 58th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON). IEEE. 2017. P. 1–5. https://doi.org/10.1109/RTUCO~N.2017.8124771
- Ojo K. S., Njah A. N., Olusola O. I., Omeike M. O. Generalized reduced-order hybrid combination synchronization of three Josephson junctions via backstepping technique // Nonlinear Dynamics. 2014. Vol. 77, № 3. P. 583–595. https://doi.org/10.1007/s11071-014-1319-z
- Vlasov V., Pikovsky A. Synchronization of a Josephson junction array in terms of global variables // Phys. Rev. E. 2013. Vol. 88, iss. 2. P. 022908 (5 pages). https://doi.org/10.1103/PhysRevE.88.022908
- Kuznetsov A. P., Sataev I. R., Sedova Yu. V. Dynamics of three and four non-identical Josephson junctions // Journal of Applied Nonlinear Dynamics. 2018. Vol. 7, № 1. P. 105–110. https://doi.org/10.5890/JAND.2018.03.009
- Baesens C., Guckenheimer J., Kim S., MacKay R. S. Three coupled oscillators: Mode locking, global bifurcations and toroidal chaos // Physica D. 1991. Vol. 49. P. 387–475. https://doi.org/10.1016/0167-2789(91)90155-3
- Broer H., Simó C., Vitolo R. The Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: The Arnol’d resonance web // Reprint from the Belgian Mathematical Society. 2008. P. 769–787. https://doi.org/10.36045/bbms/1228486406
- Inaba N., Kamiyama K., Kousaka T., Endo T. Numerical and experimental observation of Arnol’d resonance webs in an electrical circuit // Physica D. 2015. Vol. 311. P. 17–24. https://doi.org/10.1016/j.physd.2015.08.008
- Truong T. Q., Tsubone T., Sekikawa M., Inaba N., Endo T. Arnol’d resonance webs and Chenciner bubbles from a three-dimensional piecewise-constant hysteresis oscillator // Progress of Theoretical and Experimental Physics. 2017. Vol. 2017, iss. 5, P. 053A04 (15 pages). https://doi.org/10.1093/ptep/ptx058
- Kuznetsov A. P., Sedova Y. V. Low-dimensional discrete Kuramoto model: Hierarchy of multifrequency quasiperiodicity regimes // Int. J. Bifurcation Chaos. 2014. Vol. 24, iss. 07. P. 1430022 (10 pages). https://doi.org/10.1142/S0218127414300225
- Emelianova Y. P., Kuznetsov A. P., Turukina L. V., Sataev I. R., Chernyshov N. Yu. A structure of the oscillation frequencies parameter space for the system of dissipatively coupled oscillators // Communications in Nonlinear Science and Numerical Simulation. 2014. Vol. 19, iss. 4. P. 1203–1212. https://doi.org/10.1016/j.cnsns.2013.08.004
- Emelianova Yu. P., Kuznetsov A. P., Sataev I. R., Turukina L. V. Synchronization and multi-frequency oscillations in the low-dimensional chain of the selfoscillators // Physica D. 2013. Vol. 244, № 1. P. 36–49. https://doi.org/10.1016/j.physd.2012.10.012
- Broer H., Simó C., Vitolo R. Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems // Regular and Chaotic Dynamics. 2011. Vol. 16, № 1–2. P. 154–184. https://doi.org/10.1134/S1560354711010060
- Ланда П. С. Автоколебания в системах с конечным числом степеней свободы. М. : ЛИБРОКОМ, 2010. 360 с.
- Balanov A. G., Janson N. B., Postnov D. E., Sosnovtseva O. Synchronization: from simple to complex. Springer. 2009. 425 с.
Қосымша файлдар
