Control of spin wave propagation in a microwaveguide with a two-dimensional array of magnetic cylinders of variable configuration

Capa

Citar

Texto integral

Resumo

Background and Objectives: The development of magnonics, focusing on the transfer of magnetic moment or electron spin instead of charge, has opened new opportunities for the application of spin waves (SW) in the design of devices for data processing, transmission, and storage in the microwave and terahertz ranges. Yttrium iron garnet (YIG) films are used as the magnetic material for forming spin-waveguiding structures due to their exceptionally low SW damping, even at nanometer thicknesses. One promising approach to controlling SW is the use of two-dimensional arrays of magnetic nanostructures, such as cylinders and half-cylinders made of magnetite. Materials and Methods: This study involves numerical micromagnetic modeling of a microwave waveguide with an array of magnetite cylinders and half-cylinders on its surface. The modeling focuses on varying the geometric parameters of the nanostructures and the direction of the external magnetic field to investigate their influence on SW propagation characteristics. Magnetite was chosen due to its unique magnetic properties and compatibility with modern micro- and nanofabrication technologies. The micromagnetic modeling was based on the numerical solution of the Landau–Lifshitz–Gilbert equation. Results: The results of the modeling provide insights into the ability to predict and control SW behavior depending on the geometry of the magnetic elements and the orientation of the external magnetic field. This opens new perspectives for the development of highly efficient magnonic devices. Identifying optimal configurations for the cylinders and half-cylinders could lead to the creation of more compact and energy-efficient components for magnonic logic circuits and other applications in the field of magnonics. Conclusion: The study has presented a significant step towards the development of new magnonic devices operating on the principles of spin electronics. The findings offer potential for further exploration and optimization of spin wave dynamics in nanostructured waveguides, contributing to the advancement of magnonic technology.

Sobre autores

Fedor Garanin

Saratov State University

ORCID ID: 0009-0001-4999-2958
410012, Russia, Saratov, Astrakhanskaya street, 83

Anna Khutieva

Saratov State University

ORCID ID: 0000-0003-4234-420X
Código SPIN: 5141-6049
Scopus Author ID: 57224630138
410012, Russia, Saratov, Astrakhanskaya street, 83

Maria Lomova

Saratov State University

ORCID ID: 0000-0002-7464-1754
Código SPIN: 6173-4716
410012, Russia, Saratov, Astrakhanskaya street, 83

Alexander Sadovnikov

Saratov State University

ORCID ID: 0000-0002-8847-2621
Código SPIN: 8124-6029
Scopus Author ID: 36683238600
Researcher ID: F-6183-2012
410012, Russia, Saratov, Astrakhanskaya street, 83

Bibliografia

  1. Гуревич А. Г. Магнитный резонанс в ферритах и антферромагнетиках. М. : Наука, 1973. 591 с.
  2. Chumak A. V., Kabos P., Wu M., Abert C., Adelmann C., Adeyeye A. O., Åkerman J., Aliev F. G., Anane A., Awad A., Back C. H., Barman A., Bauer G. E. W., Becherer M., Beginin E. N., Bittencourt V. A. S. V., Blanter Y. M., Bortolotti P., Boventer I., Bozhko D. A. et al. Advances in Magnetics Roadmap on Spin-Wave Computing // IEEE Transactions on Magnetics. 2022. Vol. 58, № 6. Art. 0800172. https://doi.org/10.1109/TMAG.2022.3149664
  3. Stancil D. D., Prabhakar A. Spin Waves: Theory and Applications. New York : Springer, 2009. 348 p. https://doi.org/10.1007/978-0-387-77865
  4. Wang Q., Kewenig M., Schneider M., Verba R., Kohl F., Heinz B., Geilen M., Mohseni M., Lägel B., Ciubotaru F., Adelmann C., Dubs C., Cotofana S. D., Dobrovolskiy O. V., Brächer T., Pirro P., Chumak A. V. A magnonic directional coupler for integrated magnonic half-adders // Nature Electronics. 2020. Vol. 3. P. 765–774. https://doi.org/10.1038/s41928-020-00485-6
  5. Shone M. The technology of YIG film growth // Circuits Systems and Signal Process. 1985. Vol. 4. P. 89–103. https://doi.org/10.1007/BF01600074
  6. Sokolov N. S., Fedorov V. V., Korovin A. M., Suturin S. M., Baranov D. A., Gastev S. V., Krichevtsov B. B., Maksimova K. Yu., Grunin A. I., Bursian V. E., Lutsev L. V., Tabuchi M. Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static, and dynamic magnetic properties // Journal of Applied Physics. 2016. Vol. 119, iss. 2. Art. 023903. https://doi.org/10.1063/1.4939678
  7. Stognij A. I., Lutsev L. V., Bursian V. E., Novitskii N. N. Growth and spin-wave properties of thin Y₃Fe₅O₁₂ films on Si substrates // Journal of Applied Physics. 2015. Vol. 118, № 2. Art. 023905. https://doi.org/10.1063/1.4926475
  8. Stognij A., Lutsev L., Novitskii N., Bespalov A., Golikova O., Ketsko V., Gieniusz R., Maziewski A. Synthesis, magnetic properties and spin-wave propagation in thin Y₃Fe₅O₁₂ films sputtered on GaN-based substrates // Journal of Physics D: Applied Physics. 2015. Vol. 48, № 48. Art. 485002. https://doi.org/10.1088/0022-3727/48/48/485002
  9. Амельченко М. Д., Бир А. С., Огрин Ф. Ю., Одинцов С. А., Романенко Д. В., Садовников А. В., Никитов С. А., Гришин С. В. Магнитные метаповерхности с металлическими включениями // Известия высших учебных заведений. Прикладная нелинейная динамика. 2022. Т. 30, № 5. С. 563–591. https://doi.org/10.18500/0869-6632-003007
  10. Vansteenkiste A., Leliaert J., Dvornik M., Helsen M., Garcia-Sanchez F., Waeyenberge B. The design and verification of MuMax3 // AIP Advances. 2014. Vol. 4, iss. 8. Art. 107133. https://doi.org/10.1063/1.4899186
  11. Niculescu A.-G., Chircov C., Grumezescu A. M. Magnetite nanoparticles: Synthesis methods – A comparative review // Methods. 2022. Vol. 199. P. 16–27. https://doi.org/10.1016/j.ymeth.2021.04.018
  12. Trifoi A. R., Matei E., Râpă M., Berbecaru A.-C., Panaitescu C., Banu I., Doukeh R. Coprecipitation nanoarchitectonics for the synthesis of magnetite: A review of mechanism and characterization // Reaction Kinetics, Mechanisms and Catalysis. 2023. Vol. 136. P. 2835–2874. https://doi.org/10.1007/s11144-023-02514-9
  13. Hu J., Jia F., Liu W. Application of Fast Fourier Transform // High Science and Technology. 2023. Vol. 38. P. 590–597. https://doi.org/10.54097/hset.v38i.5888
  14. Venkat G., Fangohr H., Prabhakar A. Absorbing boundary layers for spin wave micromagnetics // Journal of Magnetism and Magnetic Materials. 2018. Vol. 450. P. 34–39. https://doi.org/10.1016/j.jmmm.2017.06.057
  15. Dvornik M., Kuchko A. N., Kruglyak V. V. Micromagnetic method of s-parameter characterization of magnonic devices // Journal of Applied Physics. 2011. Vol. 109, iss. 7. Art. 07D350. https://doi.org/10.1063/1.3562519
  16. Bustamante-Torres M., Romero-Fierro D., Estrella-Nuñez J., Arcentales-Vera B., Chichande-Proaño E., Bucio E. Polymeric Composite of Magnetite Iron Oxide Nanoparticles and Their Application in Biomeditsine: A Review // Polymers. 2022. Vol. 14. Art. 752. https://doi.org/10.3390/polym14040752
  17. Ganapathe L. S., Mohamed M. A., Mohamad Yunus R., Berhanuddin D. D. Magnetite (Fe₃O₄) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation // Magnetochemistry. 2020. Vol. 6, iss. 4. Art. 68. https://doi.org/10.3390/magnetochemistry6040068
  18. Włodarczyk A., Gorgoń S., Radoń A., Bajdak-Rusinek K. Magnetite Nanoparticles in Magnetic Hyperthermia and Cancer Therapies: Challenges and Perspectives // Nanomaterials. 2022. Vol. 12, iss. 11. Art. 1807. https://doi.org/10.3390/nano12111807
  19. Petrov K. D., Chubarov A. S. Magnetite Nanoparticles for Biomedical Applications // Encyclopedia. 2022. Vol. 2, iss. 4. P. 1811–1828. https://doi.org/10.3390/encyclopedia2040125
  20. Bilgic A., Cimen A. Two Novel BODIPY-Functional Magnetite Fluorescent Nano-Sensors for Detecting of Cr(VI) Ions in Aqueous Solutions // Journal of Fluorescence. 2020. Vol. 30, № 4. P. 867–881. https://doi.org/10.1007/s10895-020-02559-2
  21. Bilgic A., Cimen A. A Highly Sensitive and Selective ON-OFF Fluorescent Sensor Based on Functionalized Magnetite Nanoparticles for Detection of Cr(VI) Metal Ions in the Aqueous Medium // Journal of Molecular Liquids. 2020. Vol. 312. Art. 113398. https://doi.org/10.1016/j.molliq.2020.113398
  22. Mbeh D. A., França R., Merhi Y., Zhang X. F., Veres T., Sacher E., Yahia L. In Vitro Biocompatibility Assessment of Functionalized Magnetite Nanoparticles: Biological and Cytotoxicological Effects // Journal of Biomedical Materials Research. Part A. 2012. Vol. 100A. P. 1637–1646. https://doi.org/10.1002/jbm.a.34096

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».