Сеть массового обслуживания с повторными вызовами и нетерпеливыми клиентами как модель колл-центра

Обложка

Цитировать

Полный текст

Аннотация

Предметом математического исследования и моделирования в данной работе является колл-центр, который принимает входящие звонки, инициированные клиентами. В качестве стохастической модели процесса обслуживания звонков предлагается использовать замкнутую экспоненциальную сеть массового обслуживая с повторными вызовами и нетерпеливыми заявками. Приведен краткий обзор опубликованных работ по применению моделей массового обслуживания при математическом моделировании процессов обслуживания клиентов в колл-центрах. Описана сетевая модель, указаны возможные состояния, маршрутизация, параметры и особенности обслуживания заявок. Состояние модели полностью характеризуется распределением заявок по возможным системам массового обслуживания в заданный момент времени. Вектор, определяющий состояние сетевой модели, представляет собой цепь Маркова с непрерывным временем и конечным числом состояний. Модель исследуется в асимптотическом случае — при критическом предположении большого числа заявок в сети массового обслуживания. Используемый математический подход позволяет осуществить предельный переход от цепи Маркова к непрерывному марковскому процессу. Доказано, что плотность распределения вероятностей процесса состояния модели удовлетворяет уравнению Фоккера – Планка – Колмогорова. Используя коэффициенты сноса уравнения Фоккера – Планка – Колмогорова, можно записать систему обыкновенных дифференциальных уравнений для расчета среднего числа заявок в каждом из узлов сетевой модели с течением времени. Решение этой системы позволяет прогнозировать динамику ожидаемого количества клиентов в узлах сети и регулировать параметры работы колл-центра. Преимуществом выбранного метода исследования является возможность расчета средних характеристик модели колл-центра как в переходном, так и в стационарном режиме. Результаты исследования могут быть использованы при проектировании колл-центров и анализе их загруженности.

Об авторах

Татьяна Владимировна Русилко

Гродненский государственный университет имени Янки Купалы

ORCID iD: 0000-0002-4880-0619
Scopus Author ID: 57411934400
Беларусь, 230023, г. Гродно, ул. Ожешко, д. 22

Андрей Витальевич Паньков

Гродненский государственный университет имени Янки Купалы

ORCID iD: 0009-0009-5708-4480
Беларусь, 230023, г. Гродно, ул. Ожешко, д. 22

Список литературы

  1. Gans N., Koole G., Mandelbaum A. Telephone call centers: Tutorial, review, and research prospects. Manufacturing and Service Operations Management, 2003, vol. 5, iss. 2, pp. 79–141. https://doi.org/10.1287/msom.5.2.79.16071
  2. Stolletz R. Performance Analysis and Optimization of Inbound Call Centers. Heidelberg, German, Springer-Verlag Berlin, 2003. 219 p. https://doi.org/10.1007/978-3-642-55506-0
  3. Srinivasan R., Talim J., Wang J. Performance analysis of a call center with interactive voice response units. Top, 2004, vol. 12, pp. 91–110. https://doi.org/10.1007/BF02578926
  4. Koole G., Mandelbaum A. Queueing models of call centers: an introduction. Annals of Operations Research, 2002, vol. 113, pp. 41–59. https://doi.org/10.1023/A:1020949626017
  5. Takagi H., Taguchi Yu. Analysis of a queueing model for a call center with impatient customers and after-call work. International Journal of Pure and Applied Mathematics, 2014, vol. 90, iss. 2, pp. 205–237. https://dx.doi.org/10.12732/ijpam.v90i2.10
  6. Aguir S., Karaesmen F., Zeynep Aksin O., Chauvet F. The impact of retrials on call center performance. OR Spectrum, 2004, vol. 26, pp. 353–376. https://doi.org/10.1007/s00291-004-0165-7
  7. Nazarov A. A., Paul S. V., Lizyura O. D. Two-way communication retrial queue with unreliable server and multiple types of outgoing calls. Discrete and Continuous Models and Applied Computational Science, 2020, vol. 28, iss. 1, pp. 49–61. https://doi.org/10.22363/2658-4670-2020-28-1-49-61
  8. Mandelbaum A., Zeltyn S. Data-stories about (im)patient customers in tele-queues. Queueing Systems, 2013, vol. 75, iss. 2, pp. 115–146. https://doi.org/10.1007/s11134-013-9354-x
  9. Artalejo J. R., Gomez-Corral A. Retrial Queueing Systems. A Computational Approach. Heidelberg, German, Springer-Verlag Berlin, 2008. 318 p. https://doi.org/10.1007/978-3-540-78725-9
  10. Kim Ch., Klimenok V., Dudin A. Priority tandem queueing system with retrials and reservation of channels as a model of call center. Computers and Industrial Engineering, 2016, vol. 96, pp. 61–71. https://doi.org/10.1016/j.cie.2016.03.012
  11. Nazarov A., Moiseev A., Moiseeva S. Mathematical model of call center in the form of multi-server queueing system. Mathematics, 2021, vol. 9, iss. 22, art. 2877. https://doi.org/10.3390/math9222877
  12. Dudin A., Kim C., Dudina O. Multi-server queueing system with a generalized phase-type service time distribution as a model of call center with a call-back option. Annals of Operations Research, 2016, vol. 239, pp. 401–428. https://doi.org/10.1007/s10479-014-1626-2
  13. Rusilko T. Asymptotic analysis of a closed G-network of unreliable nodes. Journal of Applied Mathematics and Computational Mechanics, 2022, vol. 21, iss. 2, pp. 91–102. https://10.17512/jamcm.2022.2.08
  14. Medvedev G. A. Closed queueing systems and their optimization. Proceedings of the USSR Academy of Sciences. Engineering Cybernetics, 1975, vol. 6, pp. 65–73 (in Russian).
  15. Rusilko T. V. Application of queueing network models in insurance. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2022, vol. 22, iss. 3, pp. 315–321. https://doi.org/10.18500/1816-9791-2022-22-3-315-321, EDN: ONZHCB
  16. Tikhonov V. R., Mironov M. A. Markovskie protsessy [Markov Processes]. Moscow, Sovetskoe radio, 1977. 488 p. (in Russian).
  17. Paraev Yu. I. Vvedenie v statisticheskuyu dinamiku protsessov upravleniya i fil’tratsii [Introduction to Statistical Dynamics of Management and Filtering]. Moscow, Sovetskoe radio, 1976. 185 p. (in Russian).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).