Гиперболический погранслой в окрестности фронта волны сдвига в оболочках вращения

Обложка

Цитировать

Полный текст

Аннотация

В работе строятся асимптотическим методом уравнения гиперболического погранслоя в тонких оболочках вращения в малой окрестности фронта волны сдвига (с учетом его геометрии) при ударных торцевых воздействиях нормального типа. Используется специальная система координат, явно выделяющая узкую зону действия погранслоя. В этой системе координатные линии, определяемые нормалями к срединной поверхности, заменяются линиями, образующими поверхность переднего фронта волны сдвига. Асимптотическая модель геометрии  переднего фронта  волны предполагает, что эти образующие формируются повернутыми нормалями к срединной поверхности. Определены главные компоненты рассматриваемого типа напряженно-деформированного состояния: нормальное перемещение и касательное напряжение. Разрешающее уравнение рассматриваемого погранслоя является гиперболическим уравнением второго порядка с переменными коэффициентами относительно нормального перемещения.

Об авторах

Ирина Васильевна Кириллова

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского

ORCID iD: 0000-0001-8053-3680
SPIN-код: 3935-1990
Россия, г. Саратов, ул. Астраханская, 83

Список литературы

  1. Nigul U. K. Regions of effective application of the methods of three-dimensional and two-dimensional analysis of transient stress waves in shells and plates // International Journal of Solids and Structures. 1969. Vol. 5, iss. 6. P. 607–627. https://doi.org/10.1016/0020-7683(69)90031-6
  2. Кириллова И. В. Асимптотическая теория гиперболического погранслоя в оболочках вращения при ударных торцевых воздействиях тангенциального типа // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2024. Т. 24, вып. 2. С. 222–230. https://doi.org/10.18500/1816-9791-2024-24-2-222-230, EDN: SFYWBV
  3. Kirillova I. V., Kossovich L. Yu. Dynamic boundary layer at nonstationary elastic wave propagation in thin shells of revolution // AiM’96: Proceedings of the Second International conference «Asymptotics in mechanics». Saint Petersburg State Marine Technical University, Saint Petersburg, Russia, October 13–16, 1996. St. Petersburg, 1997. P. 121–128.
  4. Кириллова И. В. Асимптотический вывод двух типов приближения динамических уравнений теории упругости для тонких оболочек : дис. … канд. физ.-мат. наук. Саратов, 1998. 122 с.
  5. Кириллова И. В., Коссович Л. Ю. Асимптотическая теория волновых процессов в оболочках вращения при ударных поверхностных и торцевых нормальных воздействиях // Известия Российской академии наук. Механика твердого тела. 2022. № 2. C. 35–49. https://doi.org/10.31857/S057232992202012X, EDN: HHWAXC
  6. Новожилов В. В., Слепян Л. И. О принципе Сен-Венана в динамике стержней // Прикладная математика и механика. 1965. Т. 29, № 2. С. 261–281.
  7. Слепян Л. И. Нестационарные упругие волны. Ленинград : Судостроение, 1972. 374 с.
  8. Коул Дж. Методы возмущений в прикладной математике / пер. с англ. А. И. Державиной, В. Н. Диесперова ; под ред. О. С. Рыжова. Москва : Мир, 1972. 274 с.
  9. Гольденвейзер А. Л. Теория упругих тонких оболочек. Москва : Наука, 1976. 512 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).