Построение торсовых поверхностей на двух направляющих кривых
- Авторы: Кривошапко С.Н.1
-
Учреждения:
- Российский университет дружбы народов
- Выпуск: Том 21, № 5 (2025)
- Страницы: 377-388
- Раздел: Расчет тонких упругих оболочек
- URL: https://ogarev-online.ru/1815-5235/article/view/380171
- DOI: https://doi.org/10.22363/1815-5235-2025-21-5-377-388
- EDN: https://elibrary.ru/DQGYSO
- ID: 380171
Цитировать
Аннотация
Проведен анализ ряда опубликованных материалов по четырем типам торсовых поверхностей с двумя направляющими (опорными) алгебраическими кривыми второго порядка, лежащими в параллельных или пересекающихся плоскостях. Три типа торсов описаны кратко со ссылками на источники и приведены графические иллюстрации для каждого типа торсов, а для торсовых поверхностей с двумя опорными кривыми с пересекающимися осями в пересекающихся плоскостях представлен порядок построения этой поверхности и методика получения параметрических уравнений. Методика проиллюстрирована на трех примерах. Установлено, что до настоящего времени нет ни одного исследования напряженно-деформированного состояния предложенных тонких торсовых оболочек, заданных в криволинейных неортогональных сопряженных координатах, которые совпадают с внешним контуром торсовых оболочек. Показано, что есть предложения по применению предложенных поверхностей в архитектуре, судостроении и сельскохозяйственном машиностроении.
Об авторах
Сергей Николаевич Кривошапко
Российский университет дружбы народов
Автор, ответственный за переписку.
Email: sn_krivoshapko@mail.ru
ORCID iD: 0000-0002-9385-3699
SPIN-код: 2021-6966
доктор технических наук, профессор-косультант кафедры технологий строительства и конструкционных материалов, инженерная академия
Российская Федерация, 117198, г. Москва, ул. Миклухо-Маклая, д. 6Список литературы
- Krivoshapko S.N. Torse surfaces on a rectangular plan with two plane curves on the opposite ends. Building and Reconstruction. 2025;1(117):3–15. (In Russ.) https://doi.org/10.33979/2073-7416-2025-117-1-3-15 EDN: ACOCGO
- Krivoshapko S.N. Torse surfaces on trapezoidal plan with given in advance curves on the ends and straight generatrixes coinciding with its other sides. Structural Mechanics and Analysis of Constructions. 2025;(4):62–72. (In Russ.) https://doi.org/10.37538/0039-2383.2025.4.62.72 EDN: BOGAHV
- Krivoshapko S.N. Torses with two curves in intersecting planes and with parallel axes. Structural Mechanics of Engineering Constructions and Buildings. 2025;21(2):155–166. https://doi.org/10.22363/1815-5235-2025-21-2-155-166 EDN: NRNOQA
- Pavlenko G.E. Simplified Shapes of Ships. Moscow: MRF SSSR, 1948. (In Russ.)
- Gorbatovich J.N. Design of torse surfaces with two plane cross sections. Proceedings of BSTU. Ser. 5. Physical and Mathematical Sciences. 1995;(2):33–36. (In Russ.) Available from: https://elib.belstu.by/handle/123456789/65082 (accessed: 12.03.2025).
- Bhattacharya B. Theory of a new class of shells. Symposium on Industrialized Spatial and Shell Structures. Poland, 1973. p. 115–124.
- Rekach V.G., Ryzhov N.N. Some opportunities of broadening number of problems on design and analysis of shells. Structural Mechanics. Moscow: UDN Publ.; 1970;48(6):3–8. (In Russ.)
- Ivanov V.N. Ruled surfaces on the given supporting curves. Structural Mechanics of Engineering Constructions and Buildings. 2015;(3):9–17. (In Russ.) EDN: TNEVUR
- Ershov M.E., Tupikova E.M. Construction of development of a torse surface with the parabolas on the opposite edges. Engineering Research: Scientific-and-Practical Conference. RUDN University. 2020:31–41. (In Russ.) EDN: JDIESQ
- Francisco Perez-Arribas, Leonardo Fernandez-Jambrina. Computer-aided design of developable surfaces: designing with developable surfaces. Journal of Computers. October 2018;13(10):1171–1176. http://doi.org/10.17706/jcp.13.10.1171-1176
- Chih-Hsing Chu, Charlie C.L. Wang, Chi-Rung Tsai. Computer aided geometric design of strip using developable Bezier patches. Computers in Industry. 2008;59:601–611. http://doi.org/10.1016/j.compind.2008.03.001
- Vaskov A.A., Dorokhov A.S., Trushina L.N. Graphical construction of surfaces of plows. Bulletin of the Federal State Educational Institution of Higher Professional Education “Goryachkin Moscow State Agroengineering University.” 2012;(2):51–53. (In Russ.) EDN: RBFFND
- Krivoshapko S.N., Ivanov V.N. Encyclopedia of Analytical Surfaces. Springer International Publishing Switzerland, 2015. http://doi.org/10.1007/978-3-319-11773-7
- Yang J.X., Liu J.Q., Wang C.Y., Liu J. Design and development of developable surface based on engineering requirement. 3rd International Congress on Image and Signal Processing, Yantai, China, 2010:1231–1234. http://doi.org/10.1109/CISP.2010.5647252
- Miori I., Haruki I. A method of predicting sewn shapes and a possibility of sewing by the theory of developable surfaces. Journal of the Japan Research Association for Textile End-Uses. 2007;48(1):42–51.
- Ivanov V.N., Aleshina O.O., Larionov E.A. Determination of optimal cylindrical shells in the form of second order surfaces. Structural Mechanics of Engineering Constructions and Buildings. 2025;21(1):37–47. (In Russ.) http://doi.org/10.22363/1815-5235-2025-21-1-37-47 EDN: IQCXLS
- Belyaeva Z.V., Berestova S.A., Mityushov E.A. Tangent developable surfaces elements in thin-walled structures. VIII International Conference on Textile Composites and Inflatable Structures Structural Membranes 2017. 2018. p. 415–426. EDN: XYCRPV
- Olodo E.T., Adjovi E.C., Krivoshapko S.N. Geometrical modeling of a composite folded membrane by a developable membrane with parabolic guidelines of any order. International Journal of Scientific & Engineering Research. 2013;4(4): 338–343. ISSN 2229-5518
- Obukhova V.S., Vorobkevich R.I. Analytical description of parabolical torses of the fourth order. Applied Geometry and Engineering Graphics. 1982;33:16–19. (In Russ.)
- Rynkovskaya M. Support draft calculation for a ramp in the form of developable helicoid. 2018 IOP Conf. Ser.: Mater. Sci. Eng. 2018;371:012041. http://doi.org/10.1088/1757-899X/371/1/012041 EDN: VBTPRE
- Ivanov V.N., Alyoshina O.O. Comparative analysis of the results of determining the parameters of the stress-strain state of equal slope shell with a directrix ellipse at the base. Structural Mechanics of Engineering Constructions and Buildings. 2019;15(5):374–383. (In Russ.) http://doi.org/10.22363/1815-5235-2019-15-5-374-383 EDN: LZSVVI
- Krivoshapko S.N., Razin A.D. Comparison of two systems of governing equations for the thin shell analysis. Conference: Proceedings of the International Conference on Engineering Research 2021 (ICER 2021), Moscow, 2021; 2559(1):020009. August 2022. http://doi.org/10.1063/5.0099905
- Bajoria G.Ch. Application of a system of equations of A.L. Goldenveiser for analysis of torse shells on momentless theory. Issledovaniya po Raschotu Elementov Prostranstvennyh Sistem. Moscow: UDN Publ.; 1987. p. 65–72.
- Bhattacharya B. Membrane theory of new class of developable shells. Journal of Structural Engineering. 1983; 10(3):81–88.
- Rekach V.G., Krivoshapko S.N. Analysis of non-degenerated torse shells in curvilinear non-orthogonal coordinates. Structural Mechanics and Analysis of Constructions. 1982;(6):23–29. (In Russ.)
- Krivoshapko S.N. Application of tangential developable surfaces in shipbuilding. Shipbuilding. 1983;7:5–7 (In Russ.)
- Krivoshapko S.N. Design, analysis, and opportunity of application of torse shells in thin-walled structures. Analysis of Shells of Building Structures. Pross. Мoscow: UDN, 1982:54–66. (In Russ.)
- Bhanage A. An overview of flat pattern development (FPD) methodologies used in blank development of sheet metal components of aircraft. International Journal of Mechanical Engineering and Robotics Research. April 2014;3(2): 33–43. Available from: https://www.ijmerr.com/currentissue.php (accessed: 12.03.2025).
- Nelson T.G., Zimmerman T.K., Magleby S.P., Lang R.J., Howell L.L. Developable mechanisms on developable surfaces. Science Robotics. 20 Feb 2019;4(27). http://doi.org/10.1126/scirobotics.aau5171
- Lawrence S. Developable surfaces: Their history and application. Nexus Network Journal. October 2011;13(3): 701–714. http://doi.org/10.1007/s00004-011-0087-z EDN: HJZITK
- Ishikawa G. Singularities of parallels to tangent developable surfaces. arXiv: Differential Geometry. 16 May 2021. Available from: https://scispace.com/papers/singularities-of-parallels-to-tangent-developable-surfaces-2cdy3p4ifc (accessed: 12.03.2025).
Дополнительные файлы

