АНАЛИЗ НАПРЯЖЕННОГО СОСТОЯНИЯ ТРЕХСЛОЙНОГО АНИЗОТРОПНОГО ОСНОВАНИЯ

Обложка

Цитировать

Полный текст

Аннотация

Представлены результаты расчетов на основе уравнений плоской задачи теории упругости по определению напряжений в трехслойном анизотропном основании под действием статической нормальной поверхностной нагрузки. Рассматривается вариант полного сцепления между слоями. Функции напряжений в каждом слое записываются через нормальные и касательные усилия, возникающие на линии контакта полосы и полуплоскости. Контактные усилия между полосой и полуплоскостью определяются из системы двух уравнений и условий на поверхности основания. В результате функции напряжений в каждом слое записываются через поверхностную нагрузку в виде несобственных интегралов. Проводится анализ напряженного состояния по модели трехслойного изотропно- го основания в зависимости от упругих характеристик материала слоев. Показано влияние анизотропии материала слоев в трехслойном грунтовом массиве.

Об авторах

СЕРГЕЙ ГЕННАДЬЕВИЧ КУДРЯВЦЕВ

ФГБОУ ВО «Поволжский государственный технологический университет»

Автор, ответственный за переписку.
Email: KudryavcevSG@volgatech.net

кандидат технических наук, доцент. В 1974 окончил механический факультет Марийского политехнического института им. М. Горького и по распределению оставлен для работы на кафедре сопротивления материалов и теоретической механики в должности ассистента. 1978-1980 г.г. - аспирант кафедры сопротивления материалов и теории упругости Московского инженерно-строительного института им. В.В. Куйбышева (научный руководитель - профессор, д.т.н. Лукаш П.А.). В 1987 г. защитил кандидатскую диссертацию по специальности 05.23.17 Строительная механика. В 1991 году избран на должность доцента кафедры сопротивления материалов. Почетный работник высшего профессионального образования Российской Федерации, заслуженный работник образования республики Марий Эл. Область научных интересов: линейные и нелинейные задачи теории упругости.

424000, Республика Марий Эл, г. Йошкар-Ола, пл. Ленина, дом 3, кафедра сопротивления материалов и прикладной механики ФГБОУ ВО «ПГТУ»

ЮЛИЯ МИХАЙЛОВНА БУЛДАКОВА

ФГБОУ ВО «Поволжский государственный технологический университет»

Email: KudryavcevSG@volgatech.net

старший преподаватель кафедры сопротивления материалов и прикладной механики ФГБОУ ВО «ПГТУ». В 2010 году окончила строительный факультет в ГОУ ВПО "Марийский государственный технический университет" с присуждением квалификации инженер. С 2010 по 2013 год аспирант кафедры сопротивления материалов и прикладной механики ФГБОУ ВПО «ПГТУ». Работает на кафедре с 2014 года. Область научных интересов: линейные задачи теории упругости анизотропных тел

424000, Республика Марий Эл, г. Йошкар-Ола, пл. Ленина, дом 3, кафедра сопротивления материалов и прикладной механики ФГБОУ ВО «ПГТУ»

Список литературы

  1. Harr, M.E. (1971). Foundations of Theoretical Soil Mechanics. M.: Stroyizdat, 320 p. (In Russ.)
  2. Smirnov, A.V., Malyshev, A.A., Agalakov, Y.A. (1997). Mechanics of the Stability and Destruction of Road Constructions. Omsk: SibADI. 91 p. (In Russ.)
  3. Shekhter, O.Y. (1939). Calculation of an infinite fundamental plate lying on an elastic base of finite and infinite power and loaded with a concentrated force. Collected Works of the Research Sector of the Trust of Deep Works. М.: Gosstroiizdat. 133—139. (In Russ.)
  4. Rappoport, R.M. (1948). The Boussinesq problem for a layered elastic half-space. Proceedings of the Leningrad Polytechnic Institute No 5. 3—18. (In Russ.)
  5. Kogan, B.I. (1953). Stresses and deformations of multilayer coatings. Proceedings of HADI. Is-sue 14. 33—46. (In Russ.)
  6. Kulagina, M.F., Ivanova, V.I. (2003). The first fundamental problem of the theory of elasticity for a domain consisting of a strip and a half-plane. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences. No 19. 89—96. (In Russ.)
  7. Potelezhko, V.P. (2005). The Flaman problem for a two-layer half-plane. Mechanics and Physics of Processes on the Surface and in the Contact of Solids, Parts of Technological and Power Equipment. No 1. 29—33. (In Russ.)
  8. Golesko, V.A. (2005). Determination of radial stresses and vertical displacements at characteristic points of a three-layer half-space from approximating relationships. Bulletin of the Kharkov National Auto-mobile and Highway University. No 30. 33—35. (In Russ.)
  9. Torskaya, E.V., Lushnikov, N.A., Lushnikov, P.A. (2008). Analysis of the stress-strain state of multilayer pavements. Friction and Wear, Vol. 29, № 2. 204—210. (In Russ.)
  10. Shirunov, G.N. (2015). Method of initial functions in model of compression linearly deformable layered foundation under normal local load. Magazine of Civil Engineering. №1(53). 91—96. (In Russ.)
  11. Pan, E. (1989). Static response of transversely isotropic and layered half-space to general surface loads. Phys. Earth Planet Inter. Vol. 54. 353—363.
  12. Bugrov, A.K., Golubev, A.I. (1993). Anisotropic Soils and Foundations of Structures. SPb.: Nedra, 245 p. (In Russ.)
  13. Krupoderov, A.V. (2011). Fundamental solutions for multilayer transversal-isotropic bases. Izvestiya of TSU. Sciences of Earth. No 1. 137—146. (In Russ.)
  14. Fabrikant, V.I. (2013). Tangential contact problems for several transversely isotropic elastic layers bonded to an elastic foundation. Journal of Engineering Mathematics, Vol. 81, Iss. 1. 93—126.
  15. Kudryavtsev, S.G., Buldakova, J.M. (2015). Stress-strain state of two-layered anisotropic foun-dation. Structural Mechanics of Engineering Constructions and Buildings. No 5. 9—20. (In Russ.)
  16. Kudryavtsev, S.G., Buldakova, J.M. (2012). Interaction of anisotropic band and rigid base. Structural Mechanics of Engineering Constructions and Buildings. No 4. 29—35. (In Russ.)

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).