Частичное закрытие прямолинейной трещины, исходящей из контура кругового отверстия в стрингерной пластине

Обложка

Цитировать

Полный текст

Аннотация

Имеющиеся в пластинах технологические отверстия создают повышенную концентрацию напряжений в пластине. В статье исследуется подкрепленная стрингерами тонкая пластина, имеющая круговое отверстие, из которого исходит прямолинейная трещина. Используется модель трещины со связями между берегами в концевых зонах. Пластина и подкрепляющие ребра жесткости выполнены из разных упругих и изотропных материалов. Принято, что стрингеры не подвергаются изгибу и при деформации их толщина не меняется. Пластина полагается неограниченной и подвергается растяжению на бесконечности. Рассмотрен случай частичного закрытия трещины. Действие стрингеров заменяется неизвестными эквивалентными сосредоточенными силами, приложенными в точках соединения ребер с пластиной. Для решения рассматриваемой задачи объединяются метод решения упругой задачи и метод построения в явной форме потенциалов Колосова - Мусхелишвили, соответствующих неизвестным нормальным смещениям вдоль прямолинейной трещины. Для определения параметров, характеризующих закрытие трещины, получено сингулярное интегральное уравнение, которое с помощью процедуры алгебраизации сведено к конечной нелинейной алгебраической системе. Для определения неизвестных эквивалентных сосредоточенных сил используется закон Гука. Решение алгебраической системы было получено с использованием метода последовательных приближений. Непосредственно из решения полученных алгебраических систем были найдены силы сцепления в связях, контактные напряжения и размер контактной зоны трещины. Полученные соотношения позволяют решать обратную задачу, т.е. определять характеристики и напряженное состояние подкрепленной стрингерами тонкой пластины с круговым отверстием, при которых достигается заданная область контакта берегов прямолинейной трещины, исходящей из отверстия.

Об авторах

Минавар гызы Мир-Салимзаде

Институт математики и механики НАН Азербайджана

Автор, ответственный за переписку.
Email: minavar.mirsalimzade@imm.az

кандидат физико-математических наук, ведущий научный сотрудник отдела теории ползучести, Институт математики и механики НАН Азербайджана. Область научных интересов: теория упругости, механика разрушения пластин

ул. Б. Вахабзаде, 9, Баку, Азербайджан, AZ1141

Список литературы

  1. Mirsalimov V.M. (1977). Issledovanie predel’nogo polya napryazhenij vozle treshhin, iskhodyashhih iz konturov otverstij perforirovannoj plastiny [Study of maximum stress field alongside cracks emerging from contours of openings in a perforated plate]. Journal of Applied Mechanics and Technical Physics, (2), 147–154. (In Russ.)
  2. Mirsalimov V.M. (1979). Uprugoplasticheskoe ravnovesie plastiny, oslablennoj dvojakoperiodicheskoj sistemoj kruglyh otverstij i treshhinami, vyhodjashhimi na kontury otverstij [Elastic-plastic equilibrium of the plate with the double-periodical system of the round orifices and cracks running to the orifices contour]. Izvestiya AN AzSSR. Seriya Fiz.-tekh. i mat. nauk, (2), 118–125. (In Russ.)
  3. Mirsalimov V.M. (1980). Hrupkoe razrushenie plastiny, oslablennoj perio-dicheskoj sistemoj kruglyh otverstij s vyhodyashhimi na ih kontury treshhinami [Brittle fracture of a plate weakened by a periodic system of circular holes with cracks emanating from their contours]. International Applied Mechanics, 16(11), 992–997. (In Russ.)
  4. Mir-Salim-zadeh M.V. (2003). Fracture of an elastic rib reinforced plate weakened by a circular cracked hole. International Journal of Fracture, 122, L113–L117.
  5. Yan X. (2006). Cracks emanating from circular hole or square hole in rectangular plate in tension. Engineering Fracture Mechanics, 73(12), 1743–1754.
  6. Abdelmoula R., Semani K., Li J. (2007). Analysis of cracks originating at the boundary of a circular hole in an infinite plate by using a new conformal mapping approach. Applied Mathematics and Computation, 188(2), 1891–1896.
  7. Mirsalimov V.M., Shahbandaev E.G. (2008). Predel'noe ravnovesie teplovydeljajushhej sredy s periodicheskoj sistemoj otverstij i prjamolinejnyh treshhin [Limit equilibrium of heat-generating medium with a periodic system of holes and rectilinear cracks]. Vestnik I. Yakovlev Chuvach State Pedagogical University. Series: Mechanics of a limit state, (1), 98–107. (In Russ).
  8. Mir-Salim-zade M.V. (2008). Predel’noe ravnovesie plastiny s regulyarnoj sistemoj stringerov i ishodyashhimi iz krugovogo otverstiya treshhinami [Ultimate state of a plate with a regular system of stringers and cracks issuing from a circular hole]. Journal of Machinery Manufacture and Reliability, 37, 44–51. (In Russ.)
  9. Shahbandaev E.G. (2008). On partial closing of cracks in heat-releasing medium weakened by a periodic system of circular holes. Proceedings of IMM of NAS of Azerbaijan, XXIX(XXXVII), 215–224.
  10. Chen Y.Z., Lin X.Y., Wang Z.X. (2009). A semianalytic solution for multiple curved cracks emanating from circular hole using singular integral equation. Applied Mathematics and Computation, 213, 389–404.
  11. Guo J.-H., Lu Z.-X., Feng X. (2010). The fracture behavior of multiple cracks emanating from a circular hole in piezoelectric materials. Acta Mechanica, 215(1–4), 119–134.
  12. Tong D.H., Wu X.R. (2013). Determination of crack surface displacements for cracks emanating from a circular hole using weight function method. Fatigue & Fracture of Engineering Materials & Structures, 36, 340–348.
  13. Hasanov F.F. (2013). Modelirovanie zarozhdenija treshhin sdviga v tele, oslablennom periodicheskoj sistemoj kruglyh otverstij [Modeling of shear crack nucleation in a body, weakening by periodic system of circular holes]. Journal of mechanical engineering, 16(3), 29–37. (In Russ.)
  14. Iskenderov R.A. (2013). Zarozhdenie treshhiny pri poperechnom izgibe izotropnoj plastiny, oslablennoj periodicheskoj sistemoj krugovyh otverstij [The crack nucleation in the isotropic plate, weakened by a periodical system of circular holes under transverse bending]. Structural Mechanics of Engineering Constructions and Buildings, (3), 18–28. (In Russ.)
  15. Mirsalimov V.M., Akhmedova M.V. (2013). Uprugoplasticheskoe razrushenie tonkoj plastiny, oslablennoj periodicheskoj sistemoj krivolinejnyh otverstij [Elastoplastic fracture of a thin plate, weakened by periodic system of the curvilinear holes]. I. Yakovlev Chuvach State Pedagogical University Bulletin. Series: Mechanics of a limit state, (1), 133–144. (In Russ.)
  16. Liu T. J.-C. (2014). Joule heating behaviors around through crack emanating from circular hole under electric load. Engineering Fracture Mechanics, 123, 2–20.
  17. Yang J., Li X. (2016). Analytic solutions of problem about a circular hole with a straight crack in onedimensional hexagonal quasicrystals with piezoelectric effects. Theoretical and Applied Fracture Mechanics, 82, 17–24.
  18. Mirsalimov V.M. (2017). Cracks with interfacial bonds in perforated heat-releasing nuclear fuel. International Journal of Damage Mechanics. https://doi.org/10.1177/ 1056789517713072.
  19. Mirsalimov V.M. (1986). Nekotorye zadachi konstrukcionnogo tormozheniya treshhin [Some problems of structural arrest of cracks]. Materials Science, 22, 84–88. (In Russ.)
  20. Savruk M.P., Kravets V.S. (1995). Reinforcement of a thin cracked plate by a system of parallel stringers. Materials Science, 30, 95–104.
  21. Mir-Salim-zada M.V. (2010). Modelirovanie chastichnogo zakrytiya treshhin v perforirovannoj izotropnoj srede, usilennoj regulyarnoj sistemoj stringerov [Modeling of partial closure of cracks in a perforated isotropic medium reinforced by a regular system of stringers]. Journal of Applied Mechanics and Technical Physics, 51, 148–159. (In Russ.)
  22. Muskhelishvili N.I. (1977). Nekotorye osnovnye zadachi matematicheskoj teorii uprugosti [Some basic problems of mathematical theory of elasticity]. Moscow, Nauka Publ., 707.
  23. Panasyuk V.V., Savruk M.P., Datsyshin A.P. (1976). Raspredelenie naprjazhenij okolo treshhin v plastinah i obolochkah [Distribution of stresses near cracks in plates and shells]. Kiev, Naukova Dumka Publ., 443. (In Russ.)
  24. Mirsalimov V.M. (1987). Neodnomernye uprugoplasticheskie zadachi [Non-one-dimensional elastoplastic problems]. Moscow, Nauka Publ., 256. (In Russ.)

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).