Two-Field Prismatic Finite Element Under Elasto-Plastic Deformation


Дәйексөз келтіру

Толық мәтін

Аннотация

For elasto-plastic analysis of structures at a particular load step, a mixed finite element in the form of a prism with triangular bases was obtained. Displacement increments and stress increments were taken as nodal unknowns. The target quantities were approximated using linear functions. Two versions of physical equations were used to describe elasto-plastic deformation. The first version used the constitutive equations of the theory of plastic flow. In the second version, the physical equations were obtained based on the hypothesis of proportionality of the components of the deviators of deformation increments to the components of the deviators of stress increments. To obtain the stiffness matrix of the prismatic finite element, a nonlinear mixed functional was used, as a result of the minimization of which two systems of algebraic equations with respect to nodal unknowns were obtained. As a result of solving these systems, the stiffness matrix of the finite element was determined, using which the stiffness matrix of the analysed structure was formed. After determining the displacements at a load step, the values of the nodal stress increments were determined. A specific example shows the agreement of the calculation results using the two versions of the constitutive equations of elasto-plastic deformation.

Авторлар туралы

Rumia Kiseleva

Volgоgrad State Agrarian University

Хат алмасуға жауапты Автор.
Email: rumia1970@yandex.ru
ORCID iD: 0000-0002-3047-5256
SPIN-код: 1948-5390

Candidate of Technical Sciences, Associate Professor of the Department of Applied Geodesy, Environmental Management and Water Use

26 Universitetskiy Prospekt, Volgograd, 400002, Russian Federation

Vitaliy Ryabukha

Volgоgrad State Agrarian University

Email: vitalik30090@mail.ru
ORCID iD: 0000-0002-7394-8885
SPIN-код: 9596-2597

Postgraduate student of the Department of Mechanics

26 Universitetskiy Prospekt, Volgograd, 400002, Russian Federation

Natalia Kirsanova

Financial University under the Government of the Russian Federation

Email: nagureeve@fa.ru
ORCID iD: 0000-0003-3496-2008
SPIN-код: 8393-5900

Doctor of Physical and Mathematical Sciences, Professor of the Department of Mathematics

49 Leningradsky Prospekt, GSP-3, Moscow, 125993, Russian Federation

Yuriy Klochkov

Volgоgrad State Agrarian University

Email: klotchkov@bk.ru
ORCID iD: 0000-0002-1027-1811
SPIN-код: 9436-3693

Doctor of Technical Sciences, Professor, Head of the Department of Higher Mathematics

26 Universitetskiy Prospekt, Volgograd, 400002, Russian Federation

Anatoliy Nikolaev

Volgоgrad State Agrarian University

Email: anpetr40@yandex.ru
ORCID iD: 0000-0002-7098-5998
SPIN-код: 2653-5484

Doctor of Technical Sciences, Professor of the Department of Mechanics

26 Universitetskiy Prospekt, Volgograd, 400002, Russian Federation

Әдебиет тізімі

  1. Bate K.Yu. Finite element method: textbook. Moscow: Fizmatlit Publ.; 2010. (In Russ.) ISBN 978-5-9221-1181-2 EDN: MVSUZX
  2. Golovanov A.I., Tyuleneva O.N., Shigabutdinov A.F. Finite element method in statics and dynamics of thin-walled structures. Moscow: Fizmatlit Publ.; 2006. (In Russ.) ISBN 5-9221-0674-0 EDN: QJPXPV
  3. Krivoshapko S.N., Christian A.B.H., Gil-oulbé M. Stages and architectural styles in design and building of shells and shell structures. Building and Reconstruction. 2022;4(102):112-131. https://doi.org/10.33979/2073-7416-2022-102-4112-131 EDN: EPXBVH
  4. Beirao Da Veiga L., Lovadina C., Mora D. A virtual element method for elastic and inelastic problems on polytope meshes. Computer Methods in Applied Mechanics and Engineering. 2017;295:327-346. https://doi.org/10.1016/j.cma.2015.07.013
  5. Ilyushin A.A. Plasticity. Elastic-plastic deformations. Moscow: Lenand Publ.; 2018. (In Russ.) ISBN 978-5-9710-4588-5
  6. Zapara M., Müller W.H., Wille R., Tutyshkin N. Constitutive equations of a tensorial model for ductile damage of metals. Continuum Mechanics and Thermodynamics. 2012;24(4-6):697-717. https://doi.org/10.1007/s00161-012-0264-7 EDN: RGJNNL
  7. Sultanov L.U. Computational algorithm for investigation large elastoplastic deformations with contact interaction. Lobachevskii Journal of Mathematics. 2021;42(8):2056-2063. https://doi.org/10.1134/S19950802210 EDN: PPWQJL
  8. Aldakheel F. Micromorphic approach for gradient-extended thermo-elastic-plastic solids in the algorithmic strain space. Continuum Mechanics Thermodynamics. 2017;29(6):1207-1217. https://doi.org/10.1007/s00161-017-0571-0 EDN: CTYSYR
  9. Aldakheev F., Miehe C. Coupled thermomechanical response of gradient plasticity. International Journal of Plasticity. 2017;91:1-24. https://doi.org/10.1016/j.ijplas.2017.02.007
  10. Wriggers P., Hudobivnik B. A low order virtual element formulation for finite elastoplastic deformations. Computer Methods in Applied Mechanics and Engineering. 2017;2:123-134. http://doi.org/10.1016/j.cma.:08.053,2017
  11. Golovanov A.I. Modeling of the large elastoplastic deformations of shells. theoretical basis of finite-element models. Problems of Strength and Plasticity. 2010;72:5-17. (In Russ.) EDN: NCVHZV
  12. Aldakheei F., Wriggers P., Miehe C. A modified Gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling. Computational Mechanics. 2018;62:815-833. https://doi.org/10.1007/s00466017-1530-0 EDN: NXNXUN
  13. Hanslo P., Larson Mats G., Larson F. Tangential differential calculus and the finite element modeling of a large deformation elastic membrane problem. Computational Mechanics. 2015;56(1):87-95. http://doi.org/10.1007/s00466-0151158-x EDN: JVDYXD
  14. Magisano D., Leonetti L., Garcea G. Koiter asymptotic analysis of multilayered composite structures using mixed solid-shell finite elements. Composite Structures. 2016;154:296-308. http://doi.org/10.1016/j.compstruct.2016.07.046
  15. Magisano D., Leonetti L., Garcea G. Advantages of mixed format in geometrically nonlinear of beams and shells using solid finite elements. International Journal for Numerikal Methods Engineering. 2017:109(9):1237-1262. http:// doi.org/10.1002/nme.5322
  16. Gureeva N.A., Klochkov Yu.V., Nikolaev A.P., Yushkin V.N. Stress-strain state of shell of revolution analysis by using various formulations of three-dimensional finite elements. Structural Mechanics of Engineering Constructions and Buildings. 2020;16(5):361-379. (In Russ.) https://doi.org/10.22363/1815-5235-2020-16-5-361-379 EDN: RRVXBB
  17. Gureeva N.A., Kiseleva R.Z., Nikolaev A.P. Nonlinear deformation of a solid body on the basis of flow theory and realization of fem in mixed formulation. IOP Conference Series: Materials Science and Engineering. International Scientific and Practical Conference Engineering. 2019;675:012059. https://doi.org/10.1088/1757-899X/675/1/012059 EDN: VDBDCI
  18. Gureyeva N.A., Arkov D.P. Implementation of the deformation theory of plasticity in calculations of plane-stressed plates based on FEM in a mixed formulation. Bulletin of higher educational institutions. North caucasus region. Natural sciences. 2011;(2):12-15. (In Russ.) EDN: NUPEON
  19. Malinin N.N. Prikladnaya teoriya plastichnosti i polzuchesti. Moscow: Mashinostroenie Publ.; 1975. (In Russ.) EDN: VLPSRF

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).