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Аннотация: представлена комплексная методика проектирования мощных импульсных источников питания 

(ИИП) для специальной аппаратуры, применяемой в вычислительной технике, системах связи, медицинском оборудо-
вании и радиоэлектронной борьбе (РЭБ), направленная на минимизацию временных затрат и оптимизацию ключевых 
характеристик. Методика включает поэтапный анализ технического задания, выбор оптимальной схемотехнической 
топологии (однотактной или двухтактной), расчет и моделирование параметров силовой части, в частности трансфор-
матора и дросселей, с использованием специализированного программного обеспечения. Особое внимание уделено 
практическим аспектам отладки опытных образцов. На реальных примерах проанализированы типичные проблемы, 
возникающие на этапе создания рабочего образца: выбросы напряжения при коммутации ключевых элементов, при-
водящие к ложным срабатываниям системы управления; паразитный резонанс в первичной цепи трансформатора; по-
вышенные пульсации выходного напряжения из-за отказа снабберных цепей. Для каждой проблемы предложены и 
экспериментально проверены эффективные решения, такие как коррекция времени переключения транзисторов, сме-
щение рабочей частоты преобразователя для ухода от резонанса и подбор стойких к высокочастотным воздействиям 
компонентов. Показано, что применение предлагаемой методики позволяет последовательно выявить и устранить не-
достатки конструкции, обеспечивая соответствие готового устройства заданным техническим требованиям 
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Введение 
1 

Современная специальная аппаратура, 
применяемая в критически важных областях, 
таких как системы связи, вычислительная тех-
ника, медицинское оборудование и комплексы 
радиоэлектронной борьбы, предъявляет высо-
кие требования к источникам вторичного элек-
тропитания.  Ключевыми критериями стано-
вятся не только высокий коэффициент полез-
ного действия, но и бесперебойная работа в 
экстремальных условиях, устойчивость к 
внешним воздействиям, минимальные массо-
габаритные показатели и строгое соответствие 
нормам электромагнитной совместимости. 
Этим требованиям в полной мере отвечают 
импульсные источники питания, которые пол-
ностью вытеснили линейные аналоги [1, 2]. 
Однако проектирование мощных импульсных 
источников питания сопряжено со значитель-
ными трудностями, обусловленными сложно-
стью электромагнитных процессов, происхо-
дящих в силовой части преобразователя. В 
                                                            
 Турецкий А.В., Пирогов А.А., 
 Хорошайлова М.В., Турецкий И.А., 2025 

связи с этим актуальной задачей является раз-
работка комплексной методики проектирова-
ния, которая бы системно объединила этапы 
выбора топологии, расчета параметров, моде-
лирования, практической реализации и испы-
таний, позволяя последовательно выявлять и 
устранять потенциальные проблемы. 

Предлагаемый подход позволяет миними-
зировать временные затраты на проектирование 
за счет глубокой интеграции расчетных и моде-
лирующих процедур с последующей экспери-
ментальной верификацией, что подтверждается 
результатами испытаний опытного образца. 

 
Расчет компонентов мощных импульсных 
источников вторичного электропитания 

 
Ключевым этапом проектирования им-
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До проведения оптимизации выходное 
напряжение характеризовалось значительными 
выбросами амплитудой до 200 вольт, возни-
кавшими в моменты коммутации ключевых 
транзисторов. Эти выбросы, существенно пре-
вышавшие номинальное значение 80 вольт, 
представляли серьезную угрозу для стабиль-
ности работы питаемой аппаратуры и могли 
приводить к ложным срабатываниям систем 
защиты. После замены конденсатора на ком-
понент с улучшенными частотными характе-
ристиками амплитуда помех снизилась более 
чем в 400 раз - с 200 вольт до 0.5 вольт. Такой 
уровень пульсаций, составляющий менее 
0.63 % от номинального выходного напряже-
ния, полностью соответствует требованиям 
технического задания и обеспечивает надеж-
ную работу подключенных устройств. Вре-
менные параметры переходных процессов 
также значительно улучшились: длительность 
выбросов сократилась с 1.5 микросекунд до 
нескольких десятков наносекунд, что свиде-
тельствует о восстановлении демпфирующих 
свойств снабберной цепи. 

 
Заключение 

 
В результате проведенного исследования 

разработана и успешно апробирована ком-
плексная методика проектирования мощных 
импульсных источников питания для аппара-
туры специального назначения. Практическая 
реализация методики подтвердила ее эффек-
тивность на примере создания преобразователя 
с выходными параметрами 3 В при токе на-
грузки 4 А и рабочей частотой 300 кГц. Клю-
чевым достижением работы стало последова-
тельное выявление и устранение критических 
проблем, характерных для силовых цепей вы-
сокой мощности. Экспериментально установ-
лено, что первоначальные выбросы напряже-
ния амплитудой до 200 В, обусловленные ре-
зонансными явлениями на частоте 1.2 МГц и 
недостаточным демпфированием, были сни-
жены до безопасного уровня 12 В за счет кор-
рекции времени переключения ключевых эле-
ментов и смещения рабочей частоты на 10 кГц. 

Существенным преимуществом предло-
женной методики является ее итерационный 
характер, позволяющий на этапе компьютер-
ного моделирования и прототипирования 
идентифицировать проблемы, которые тради-
ционно выявляются лишь на стадии серийного 
производства. Оптимизация снабберных цепей 
позволила снизить уровень пульсаций выход-
ного напряжения с 200 В до 0.5 В, что состав-
ляет менее 0.63 % от номинального значения 
80 В и значительно превышает требования 
технического задания. Доказана целесообраз-
ность применения IGBT-транзисторов в мощ-
ных преобразователях, обеспечивающих оп-
тимальное соотношение скорости коммутации 
и устойчивости к переходным процессам. 
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DESIGN METHODOLOGY FOR HIGH-POWER SWITCHING POWER SUPPLIES FOR 

SPECIAL-PURPOSE EQUIPMENT WITH IMPROVED ELECTROMAGNETIC 
CHARACTERISTICS 

 
A.V. Turetskiy1, A.A. Pirogov1, M.V. Khoroshaylova1, I.A. Turetskiy2 

 
1Voronezh State Technical University, Voronezh, Russia  

2JSC Scientific and Innovation Enterprise «PROTEK», Voronezh, Russia 
 

Abstract: we present a comprehensive design methodology for high-power switching power supplies (SPS) for special 
equipment used in computing, communication systems, medical equipment and electronic warfare, aimed at minimizing time 
costs and optimizing key characteristics. The methodology includes a step-by-step analysis of the technical task, selection of 
the optimal circuit topology (single-stroke or push-pull), calculation and modeling of the parameters of the power unit, in par-
ticular the transformer and chokes, using specialized software. Special attention is paid to the practical aspects of debugging 
prototypes. Using real-world examples, we analyzed typical problems that arise at the stage of creating a working sample: 
voltage surges during switching of key elements, leading to false alarms of the control system; parasitic resonance in the pri-
mary circuit of the transformer; increased output voltage ripples due to the failure of the supply chains. We proposed effective 
solutions and experimentally tested for each problem, such as correcting the switching time of transistors, shifting the operat-
ing frequency of the converter to avoid resonance, and selecting components resistant to high-frequency effects. We show that 
the application of the proposed technique makes it possible, therefore, to identify and eliminate design flaws, ensuring that the 
finished device meets the specified technical requirements 

 
Key words: switching power supply, electromagnetic compatibility, parameter optimization, transformer calculation, 

thermal modes 
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