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Аннотация: атмосферные оптические линии связи (АОЛС) представляют собой широкополосную альтернативу 

радиочастотных систем передачи «последней мили», обеспечивая быстроту и легкость развертывания, работу в нели-
цензируемом диапазоне длин волн, высокую частотную эффективность и скрытность. В то же время ряд атмосферных 
явлений, таких как туман, сильный дождь или снегопад, а также присутствие турбулентности в атмосферном оптиче-
ском канале может привести к серьезному ухудшению качества связи. Для снижения влияния этого фактора при со-
хранении простоты устройства оптического приемника предложено использовать методы помехоустойчивого кодиро-
вания. В статье Для этой цели рассматривается использование полярных кодов, поскольку они позволяют достичь 
наилучших показателей информационной эффективности оптического канала. Представлена одноканальная система 
атмосферной оптической связи с модуляцией интенсивности и некогерентным детектированием. Для условий распро-
странения в статистике гамма-гамма распределения приведены результаты моделирования методом Монте-Карло.  
Показано, что применение предложенного метода кодирования для скоростей 0,5 и 0,75 показывает эффективность 
полярных кодов в АОЛС для снижения влияния затухания, вызванного атмосферной турбулентностью при сохране-
нии сравнительно низкой вычислительной сложности кодеков 
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Введение1 
 

Атмосферные оптические линии связи 
(АОЛС) представляют собой широкополосную 
технологию оптической беспроводной связи. 
Это экономически эффективное решение для 
связи на «последней миле», по сравнению с ра-
диочастотными системами связи дающее ряд 
преимуществ. К ним можно отнести более вы-
сокую пропускную способность канала, нели-
цензируемый частотный диапазон, высокий 
уровень защищенности канала и устойчивость 
к электромагнитным помехам [1]. Однако в 
практически реализуемых системах АОЛС на 
качество связи оказывают влияние ряд факто-
ров, таких как геометрические потери, ошибки 
нацеливания, потери из-за атмосферного зату-
хания и турбулентности, фоновый шум [2].  

Влияние атмосферной турбулентности, ко-
торое приводит к флуктуациям амплитуды и 
фазы оптических сигналов из-за неоднородно-
стей температуры и давления в атмосферном 
канале связи, является фактором, наиболее 
сильно снижающим качество связи. Для реше-
ния этой проблемы используются различные 
методы, к наиболее употребимым среди кото-
рых можно отнести пространственное разнесе-
ние, использование ретрансляторов, а также 
развертывание гибридных радиооптических 
систем [1]. Учитывая высокую пропускную 
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способность каналов АОЛС можно считать, что 
что параметры канала будут медленно меняться 
во времени (т. е. будут иметь место медленные 
замирания), тогда параметрами передачи мож-
но управлять, располагая информацией о со-
стоянии канала (CSI), которая передается через 
канал обратной связи.  

Одним из весьма эффективных путей ре-
шения такой проблемы является применение 
помехоустойчивого кодирования.  

Было предложено сравнительно большое 
число кодов, потенциально повышающих по-
мехоустойчивость оптических систем связи, 
например, турбокоды, коды с низкой плотно-
стью проверок на четность (LDPC), коды Рида-
Соломона [3]. Коды LDPC обеспечивают боль-
ший энергетический выигрыш кодирования по 
сравнению с кодами Рида-Соломона [4]. В ли-
тературе описаны каналы АОЛС с пространст-
венно-временными, повторными и бесскорост-
ными схемами кодирования.  

В качестве перспективного решения могут 
быть использованы полярные коды, впервые 
предложенные Ариканом [5], которые могут 
достигать предела пропускной способности 
двоичного симметричного канала без памяти. 
Как известно, такие коды введены в стандарт 
беспроводной связи 5G как позволяющие реа-
лизовать максимум производительности систе-
мы передачи данных. 
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Модель системы 

 
В статье рассмотрена система атмосферной 

оптической связи, структурная схема которой 
представлена на рис. Из соображений простоты 
анализа выбран оптический передатчик с моду-
ляцией интенсивности, а оптический приемник 
считается некогерентным. Шумы засветки по-
лагаются малыми, следовательно, приемник 
работает в режиме ограничения тепловыми 
шумами, моделируемыми гауссовским распре-
делением с нулевым средним [1]. 

Оптический канал связи далее будет рас-
сматриваться как дискретный по времени дво-
ичный симметричный со стираниями. Воздей-
ствие его на передаваемый сигнал будет заклю-
чаться в комбинации эффектов атмосферного 
ослабления и турбулентности. Моделирование 
распространения оптического сигнала будет 
проводиться в предположении плоского волно-
вого фронта. Тогда принимаемый сигнал мож-
но описать математическим выражением вида 

 

IR= η h I0+ n,   (1) 
 

где I0 и IR представляют собой интенсивности 
передаваемого и принимаемого сигналов соот-
ветственно, η — чувствительность фотодетек-
тора, h — затухание интенсивности, обуслов-
ленное влиянием атмосферного турбулентного 
канала, n — гауссовский белый шум с нулевым 
средним.  

Поскольку требуется обеспечение неотри-
цательности оптического сигнала, для угловой 
модуляции требуется присутствие постоянного 
смещения. Поэтому далее будет рассмотрен 
простейший тип модуляции добротности, пред-
ставляя передаваемый сигнал как I0 = P0x, где 
Р0 – выходная мощность излучателя, x ∈ {0, 1}. 

Как упоминалось выше, оптический сиг-
нал при распространении в канале подвергается 

ослаблению, описываемому законом Бира-
Ламберта [1] 

 

IR / I0 = exp(-L),   (2) 
где IR, I0 – интенсивности принимаемого и пе-
редаваемого оптического сигнала соответст-
венно,  — коэффициент экстинкции, L — рас-
стояние между передающим и приемным  мо-
дулем. Величина  в большинстве случаев оп-
ределяется влиянием Ми-рассеяния, при этом   
будет равен [1]: 
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где V — метеорологическая дальность видимо-
сти, 0 — длина волны, qV — метеокоэффици-
ент, расчет которого приведен, например, в [1]. 

Основной причиной возникновения турбу-
лентности является появление перепадов тем-
пературы и давления, что приводит к образова-
нию воздушных течений в атмосфере. В ре-
зультате в канале связи формируются области 
турбулентности с различными коэффициентами 
преломления, представляющими собой случай-
ные величины. При распространении через эти 
области неоднородности волновой фронт опти-
ческого пучка искажается. Это приводит к слу-
чайному распределению фаз и, вследствие ин-
терференции, также к случайному распределе-
нию оптической мощности в поперечном сече-
нии пучка. В результате возникает явление 
сцинтилляции, когда интенсивность оптическо-
го сигнала на приемной апертуре также стано-
вится случайной.  

Атмосферную турбулентность таким обра-
зом удобно определять как случайный процесс. 
Для его статистического описания в данной ста-
тье использовано гамма-гамма распределение 
при всех видах атмосферной турбулентности [4].  
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Величину турбулентности будем характе-
ризовать дисперсией Рытова: 6/116/722 23,1 LkCnP  , 

где 2
nC  – структурная константа показателя пре-

ломления, k – волновое число.  
Плотность вероятности процесса, описы-

ваемого гамма-гамма распределением, равна [4]:  
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где  и  — эффективные размеры крупно- и 
мелкомасштабных областей турбулентности 
соответственно, Г(х) — гамма-функция. Для 
плоского волнового фронта эти коэффициенты 
определяются как [1, 4]: 
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где Kа(х) — модифицированная функция Бессе-
ля порядка а второго рода. 

Степень флуктуаций интенсивности будем 
оценивать индексом сцинтилляции 2

I  [4]: 
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где m — оператор матожидания.  
Для снижения влияния сцинтилляции 

применяется техника апертурного усреднения. 
В этом случае выражение для расчета индекса 
сцинтилляции приобретает вид [4]: 
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где D — диаметр приемной апертуры, а  
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Для повышения помехоустойчивости в 
АОЛС использован кодек полярного кода. 
Впервые описанные Ариканом [5], полярные 
коды достигают пропускной способности кана-
ла. Согласно представленной концепции, такие 
коды используют принцип передачи через на-
бор поляризованных каналов. В той их части, 
которая соответствует каналам без помех, мож-
но достичь Шенноновского предела пропуск-
ной способности для двоичного канала без па-
мяти. Определим полярный код как (N, K, A) – 

код, где K и N – длина информационной и ко-
довой частей соответственно, А – множество 
«замороженных» бит, получаемых в результате 
поляризации канала. Концепция поляризации 
[5, 6] состоит в создании N поляризованных 
каналов, в каждом из них передаются биты с 
различной вероятностью декодирования.  

Кодер полярного (N, K) – кода для каждого 
вектора информационного сообщения 
u = [u0, u1, u2, …, uN-1] назначает K информаци-
онных бит для K наиболее надежных каналов. 
Оставшиеся N-K бит объявляются «заморожен-
ными» и не несут информации [5, 6]. Получае-
мая кодовая комбинация с = [с0, с1, с2, …, сN-1] 
определяется согласно уравнению кодирования: 

 

с = u  GN,   (6) 
 

где GN — матрица преобразования размерности 
N  N, заданная как 
 

GN = G2
⊗ n, 
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где n = log2(N) — длина кода, символом ⊗ обо-
значено произведение Кронекера. 

При распространении по общему набору 
каналов символы из u преобразуются в выход-
ной вектор y = [y0, y1, …, yN-1]. 

Выбор каналов для передачи информаци-
онных и замороженных бит на передающей 
стороне определяется на основе вычисления 
параметра Бхаттачарьи. Это верхний предел 
для вероятности ошибки при декодировании по 
методу максимального правдоподобия, опреде-
ляемый как 
 

( | 0) ( |1)B
y

Z P y P y .  (8) 

 

На приемной стороне выполняется деко-
дирование с последовательным исключением 
(SC).  

Поскольку кодовые блоки в полярном ко-
дере добавляют корреляцию между битами ин-
формации, каждый бит кода связан со всеми 
своими предыдущими битами. Такая корреля-
ция эквивалентна наличию помех в последова-
тельности информационных бит, которые, тем 
не менее, повышают эффективность декодиро-
вания. Это свойство лежит в основе централь-
ного принципа алгоритма декодирования с по-
следовательным исключением. Здесь последо-
вательное исключение «помех», которые были 
вызваны последовательностью предшествую-
щих бит, ведет к росту надежности восстанов-
ления бит информации. Регулярность структу-
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