Modern personal identification methods in dentistry
- 作者: Verkhovskiy A.E.1, Apresyan S.V.2, Stepanov A.G.2
-
隶属关系:
- Smolensk State Medical University
- Peoples’ Friendship University of Russia
- 期: 卷 28, 编号 6 (2024)
- 页面: 624-633
- 栏目: Reviews
- URL: https://ogarev-online.ru/1728-2802/article/view/313575
- DOI: https://doi.org/10.17816/dent637462
- ID: 313575
如何引用文章
详细
The paper provides a review of relevant studies on the use of digital technology for personal identification in dentistry, as well as the main challenges of their implementation and use in real-world dental practice. Modern aspects of diagnosis and comprehensive planning of identification studies are aimed at improving the efficacy of solving complex medical and legal problems. The use of digital technology in dentistry has improved the accuracy of personal identification, as well as the reliability of forensic evidence. Significant advantages of digital photo and X-ray examinations over conventional techniques, as well as the benefits of digital 3D face reconstruction and dental identification, have been demonstrated. These findings indicate that artificial intelligence technology has the potential to improve identification methods.
At the same time, professional literature demonstrates shortcomings of artificial intelligence-based solutions in terms of discrimination, transparency, accountability, personal privacy, data safety, ethical norms, and other critical aspects. Thus, some authors suggest that the use of intellectual computer systems should be limited or even prohibited when drawing final conclusions and making judgments based on expert examination results. However, leading industry experts are increasingly convinced that the virtual evolution of self-developing artificial intelligence systems designed for independent existence is unavoidable.
According to recent research, the scientific community is increasingly interested in the implementation of innovative digital technology for effective solving of everyday research and practice challenges. Thus, digital technology has the potential to be a valuable tool for solving personal identification tasks and improving the quality of forensic evidence.
作者简介
Andrey Verkhovskiy
Smolensk State Medical University
编辑信件的主要联系方式.
Email: a.verhovskii@mail.ru
ORCID iD: 0000-0002-1627-9099
SPIN 代码: 7617-8166
MD, Cand. Sci (Medicine), Associate Professor
俄罗斯联邦, 28 Krupskaya street, 214019 SmolenskSamvel Apresyan
Peoples’ Friendship University of Russia
Email: apresyan@rudn.ru
ORCID iD: 0000-0002-3281-707X
SPIN 代码: 6317-9002
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, MoscowAleksandr Stepanov
Peoples’ Friendship University of Russia
Email: stepanovmd@list.ru
ORCID iD: 0000-0002-6543-0998
SPIN 代码: 5848-6077
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, Moscow参考
- Nagi R, Aravinda K, Rakesh N, et al. Digitization in forensic odontology: A paradigm shift in forensic investigations. J Forensic Dent Sci. 2019;11(1):5–10. doi: 10.4103/jfo.jfds_55_19
- Gupta S, Agnihotri A, Chandra A, Gupta OP. Contemporary practice in forensic odontology. J Oral Maxillofac Pathol. 2014;18(2):244–250. doi: 10.4103/0973-029X.140767
- Wankhade TD, Ingale SW, Mohite PM, Bankar NJ. Artificial intelligence in forensic medicine and toxicology: the future of forensic medicine. Cureus. 2022;14(8):e28376. doi: 10.7759/cureus.28376
- Zolotenkova GV, Rogachev AI, Pigolkin YI, et al. Age classification in forensic medicine using machine learning techniques. Sovrem Tekhnologii Med. 2022;14(1):15–22. doi: 10.17691/stm2022.14.1.02
- Manigandan T, Sumathy C, Elumalai M, et al. Forensic radiology in dentistry. J Pharm Bioallied Sci. 2015;7(Suppl. 1):S260-S264. doi: 10.4103/0975-7406.155944
- Vodanović M, Subašić M, Milošević D, Savić Pavičin I. Artificial intelligence in medicine and dentistry. Acta Stomatol Croat. 2023;57(1):70–84. doi: 10.15644/asc57/1/8
- Bucci A, Skrami E, Faragalli A, et al. Segmented Bayesian calibration approach for estimating age in forensic science. Biom J. 2019;61(6):1575–1594. doi: 10.1002/ bimj.201900016
- Rokhshad R, Ducret M, Chaurasia A, et al. Ethical considerations on artificial intelligence in dentistry: A framework and checklist. J Dent. 2023;135:104593. doi: 10.1016/j.jdent.2023.104593
- Franco A, Mendes SDSC, Picoli FF, et al. Forensic thanatology and the pink tooth phenomenon: From the lack of relation with the cause of death to a potential evidence of cadaveric decomposition in dental autopsies — case series. Forensic Sci Int. 2018;291:e8–e12. doi: 10.1016/j.forsciint.2018.08.011
- Balaji N, Senapati S, Sumathi MK. Forensic digital photography: A review. Int J Dent Med Res. 2014;1(3):132–135.
- Khatri M, Daniel MJ, Srinivasan SV. A comparative study of overlay generation methods in bite mark analysis. J Forensic Dent Sci. 2013;5(1):16–21. doi: 10.4103/0975-1475.114550
- Wright FD, Golden GS. The use of full spectrum digital photography for evidence collection and preservation in cases involving forensic odontology. Forensic Sci Int. 2010;201(1-3):59–67. doi: 10.1016/j.forsciint.2010.03.013
- Rozov RA, Trezubov VN, Popov VL, et al. Automated digital superimposition of the 3D model and archival photographs of full removable dentures in forensic dentistry. Stomatologiia (Mosk). 2022;101(3):61–69. EDN: NAQEDB doi: 10.17116/stomat202210103161
- Velenko PS, Poletaeva MP, Bychkov AA, et al. Chromatographic analysis of hard tooth tissue to determine the age of personality. Sud Med Ekspert. 2023;66(4):58–61. EDN: QXBXYU doi: 10.17116/sudmed20236604158
- Rajaram Mohan K, Mathew Fenn S. Artificial intelligence and its theranostic applications in dentistry. Cureus. 2023;15(5):e38711. doi: 10.7759/cureus.38711
- Kil’dyushov EM, Egorova EV, Dvornikov AS, Delyan VA. Estimation of individual biological age in individual in forensic medicine (review). Russian Journal of Forensiс Medicine. 2020;6(3):4–11. EDN: QQTPDL doi: 10.19048/fm317
- Ortiz AG, Soares GH, da Rosa GC, et al. A pilot study of an automated personal identification process: Applying machine learning to panoramic radiographs. Imaging Sci Dent. 2021;51(2):187–193. doi: 10.5624/isd.20200324
- Heo MS, Kim JE, Hwang JJ, et al. Artificial intelligence in oral and maxillofacial radiology: what is currently possible? Dentomaxillofac Radiol. 2021;50(3):20200375. doi: 10.1259/dmfr.20200375
- Lewis JM, Senn DR. Forensic dental age estimation: an overview. J Calif Dent Assoc. 2015;43(6):315–319.
- Maji A, Khaitan T, Sinha R, et al. A novel computer-assisted method of bite mark analysis for gender determination. J Environ Public Health. 2018;2018:7130876. doi: 10.1155/2018/7130876
- Aragón ML, Pontes LF, Bichara LM, et al. Validity and reliability of intraoral scanners compared to conventional gypsum models measurements: a systematic review. Eur J Orthod. 2016;38(4):429–434. doi: 10.1093/ejo/cjw033
- Zimmermann M, Mehl A, Mörmann WH, Reich S. Intraoral scanning systems — a current overview. Int J Comput Dent. 2015;18(2):101–129.
- Huang T, Xu H, Wang H, et al. Artificial intelligence for medicine: Progress, challenges, and perspectives. The Innovation Medicine. 2023;1(2):100030. doi: 10.59717/j.xinn-med.2023.100030
- Nijhawan R, Ansari SA, Kumar S, et al. Gun identification from gunshot audios for secure public places using transformer learning. Sci Rep. 2022;12(1):13300. doi: 10.1038/s41598-022-17497-1
- Shui W, Wu X, Zhou M. A computerized facial approximation method for Homo sapiens based on facial soft tissue thickness depths and geometric morphometrics. J Anat. 2023;243(5):796–812. doi: 10.1111/joa.13920
- Alam MK, Alftaikhah SAA, Issrani R, et al. Applications of artificial intelligence in the utilisation of imaging modalities in dentistry: A systematic review and meta-analysis of in-vitro studies. Heliyon. 2024;10(3):e24221. doi: 10.1016/j.heliyon.2024.e24221
- Vanezis P, Blowes RW, Linney AD, et al. Application of 3-D computer graphics for facial reconstruction and comparison with sculpting techniques. Forensic Sci Int. 1989;42(1-2):69–84. doi: 10.1016/0379-0738(89)90200-4
- Mays S. The effect of factors other than age upon skeletal age indicators in the adult. Ann Hum Biol. 2015;42(4):332–341. doi: 10.3109/03014460.2015.1044470
- Cheng C, Cheng X, Dai N, et al. Facial morphology prediction after complete denture restoration based on principal component analysis. J Oral Biol Craniofac Res. 2019;9(3):241–250. doi: 10.1016/j.jobcr.2019.06.002
- Verma AK, Kumar S, Bhattacharya S. Identification of a person with the help of bite mark analysis. J Oral Biol Craniofac Res. 2013;3(2):88–91. doi: 10.1016/j.jobcr.2013.05.002
- Daniel MJ, Pazhani A. Accuracy of bite mark analysis from food substances: A comparative study. J Forensic Dent Sci. 2015;7(3):222–226. doi: 10.4103/0975-1475.172442
- Shan T, Tay FR, Gu L. Application of artificial intelligence in dentistry. J Dent Res. 2021;100(3):232–244. doi: 10.1177/0022034520969115
- Cahan P, Treutlein B. A conversation with ChatGPT on the role of computational systems biology in stem cell research. Stem Cell Reports. 2023;18(1):1–2. doi: 10.1016/j.stemcr.2022.12.009
- van Dis EAM, Bollen J, Zuidema W, et al. ChatGPT: five priorities for research. Nature. 2023;614(7947):224–226. doi: 10.1038/d41586-023-00288-7
- Kou Y, Gui X. Mediating community — ai interaction through situated explanation. In: Proceedings of the ACM on human-computer interaction. 2020;4(102): 1–27. doi: 10.1145/3415173
- Mehnen L, Gruarin S, Vasileva M, Knapp B. ChatGPT as a medical doctor? A diagnostic accuracy study on common and rare diseases. medRxiv. 2023. doi: 10.1101/2023.04.20.23288859
- Koski E, Murphy J. AI in healthcare. Stud Health Technol Inform. 2021;284:295–299. doi: 10.3233/SHTI210726
补充文件
