Quality of life of patients with complete loss of teeth and psychometric properties of the OHIP-20 DG questionnaire. Part 4. Evaluation of the parameters using a nonlinear principal components analysis by the CatPCA algorithm

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: The study researched the structure of the OHIP-20 DG questionnaire, which was compiled from the questions of the validated international special questionnaire OHIP-49, to assess the patients’ quality of life depending on their mouths’ organs and tissue with the help of сategorical principal component analysis.

PURPOSE OF THE STUDY: Reduce the original set of variables to an uncorrelated variables that carry the bulk of the information contained in the original set.

MATERIAL AND METHODS: To determine the connections between the scales of the quality of life (QoL) questionnaire OHIP-20 DG and to assess the factor validity of the latter, data reduction with generalization procedure was conducted by the method of nonlinear principal component using the CatPCA algorithm.

RESULTS: All scores from 0 to 4 were smoothed by a second-degree polynomial spline with three internal knots and ranking as a discretization method. To determine the number of necessary and sufficient components, Cattell’s scree plot and broken stick criteria were used. Calculations were performed using the IBM SPSS Statistics package (version 20), graphical constructions in the KyPlot (version 6.0), and PAST (version 4.06) packages.

CONCLUSION: The factor structure of the questionnaire was explored using CatPCA algorithm of nonlinear principal component analysis. The analysis confirmed the factor validity of the OHIP-20 DG questionnaire, but found two weak structural elements that are not related to the QoL, but most likely have a connection with the psychosocial aspects of patients’ health. Comparison of the questionnaires’ initial scores with their quantification values revealed the nonlinearity of patients’ perception of most of the questionnaire items. Which allows for a broader interpretation of the patterns of patients’ perception of QoL and further improvement of the questionnaire.

About the authors

Sergey A. Muslov

A.I. Evdokimov Moscow State Medical and Dental University

Author for correspondence.
Email: muslov@mail.ru
ORCID iD: 0000-0002-9752-6804

Dr. Sci. (Biological, Physico-Mathematical), professor

Russian Federation, 20, buil. 1, Delegatskaya str., Moscow, 127018

Denis Yu. Nokhrin

Chelyabinsk State University

Email: nokhrindenis@gmail.com
ORCID iD: 0000-0002-4920-2338

MD, Cand. Sci. (Biol.)

Russian Federation, Chelyabinsk

Sergey D. Arutyunov

A.I. Evdokimov Moscow State Medical and Dental University

Email: sd.arutyunov@mail.ru
ORCID iD: 0000-0001-6512-8724

MD, Dr. Sci. (Med.), professor

Russian Federation, 20, buil. 1, Delegatskaya str., Moscow, 127018

Evgeny A. Chizhmakov

A.I. Evdokimov Moscow State Medical and Dental University

Email: evgeniychigmakov@yandex.ru
ORCID iD: 0000-0003-1313-3307
Russian Federation, 20, buil. 1, Delegatskaya str., Moscow, 127018

Anton A. Pivovarov

A.I. Evdokimov Moscow State Medical and Dental University

Email: pivovarovanton@mail.ru
ORCID iD: 0000-0001-9778-0258

MD, Cand. Sci. (Med.), associate professor

Russian Federation, 20, buil. 1, Delegatskaya str., Moscow, 127018

Maria S. Platonova

A.I. Evdokimov Moscow State Medical and Dental University

Email: platonovamaria@yandex.ru
ORCID iD: 0000-0002-0137-857X
Russian Federation, 20, buil. 1, Delegatskaya str., Moscow, 127018

References

  1. Gazhva SI, Gazhva YV, Guluev RS. The quality of life in paitents with diseases of oral cavity (review of literature). Modern Problems of Science and Education. 2012;(4):2. (In Russ).
  2. Patent RUS № 2021613358/ 19.02.2021. Arutyunov SD, Muslov SA, Grachev DI, et al. Programma dlya EVM “OHIP-20-DG”. Available from: https://elibrary.ru/item.asp?id=45819191
  3. IBM [Internet]. Categorical principal components analysis (2021) [cited 15 Mar 2022]. Available from: https://www.ibm.com/docs/ru/spss-statistics/SaaS?topic=categories-categorical-principal-components-analysis-catpca
  4. Fomina EE. Factor analysis and categorial principal component analysis: comparative analysis and practical application for processing of questionnaire survey results. Humanities Bulletin of BMSTU. 2017(10):3. (In Russ). doi: 10.18698/2306-8477-2017-10-473
  5. Van der Kooij AJ, Meulman JJ. Categorical Principal Components Analysis. In: Meulman JJ, Heiser WJ, editors. SPPS Categories 10.0. Chicago: SPSS Inc.; 1999. P. 1–9, 103–126, 221–237.
  6. Gifi А. Nonlinear Multivariate Analysis. New York: John Wiley & Sons; 1990.
  7. Michailidis G, de Leeuw J. The Gifi System of Descriptive Multivariate Analysis. Statistical Science. 1998;13(4):307–336.
  8. Manisera M, van der Kooij AJ, Dusseldorp E. Identifying the Component Structure of Satisfaction Scales by Nonlinear Principal Components Analysis. Quality Technology & Quantitative Management. 2016;7(2):97–115. doi: 10.1080/16843703.2010.11673222
  9. Nokhrin DY. Laboratornyi praktikum po biostatistike. Chelyabinsk: ChelGU; 2018. (In Russ).
  10. Isakin MA, Teplykh GV. Research of higher engineering education quality on the base of students interviewing data by nonlinear principal components analysis (NLPCA). Applied Econometrics. 2011;(1):70–96. (In Russ).
  11. Zangieva I, Rotmistrov A. Factor analysis of ordinal variables: a comparative study. Monitoring of Public Opinion: Economic and Social Changes. 2018(3):29–46. (In Russ). doi: 10.14515/monitoring.2018.3.02
  12. Tolstova YN. Izmerenie v sotsiologii: Kurs lektsii. Moscow: Infra-M; 1998. (In Russ).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Identification of the main components during the analysis of the OHIP-20 DG questionnaire data by the CatPCA method

Download (80KB)
3. Fig. 2. Ordination diagram. Spheres of quality of life (vectors) and patients (points) in the space of the first and second nonlinear main components of quality of life identified by the CatPCA method in the OHIP-20 DG questionnaire

Download (98KB)
4. Fig. 3. Distribution of patients according to the values of the first main component of quality of life: 1 — histogram, 2 — kernel density, 3 — normal curve

Download (106KB)
5. Fig. 4. Quantification of the OHIP-20 DG questionnaire’s scales using the CatPCA algorithm

Download (405KB)

Copyright (c) 2022 Muslov S.A., Nokhrin D.Y., Arutyunov S.D., Chizhmakov E.A., Pivovarov A.A., Platonova M.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».