Trier Social Stress Test for Assessing Psychosocial Stress Based on Heart Rate Variability Parameters in Male and Female Students of a Higher Educational Institution

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: The study of heart rate variability under short-term experimentally induced psychosocial stress is important for understanding the mechanisms of autonomic regulation of cardiac activity.

AIM: The work aimed to investigate the changes of heart rate variability parameters during short-term intensive exposure to psychosocial stress factors using the Trier Social Stress Test in male and female first- and second-year students of a higher educational institution.

METHODS: It was a prospective study. Inclusion criteria: health group I or II; age 19–22 years; willingness to participate and strong motivation for high performance. Exclusion criteria: any degree of obesity; history of chronic cardiovascular or neurological diseases. Two groups were formed according to sex: group 1, females; group 2, males. Acute psychosocial stress was induced using a modified Trier Social Stress Test protocol. At each stage, a 5-minute segment of cardiointerval recording was obtained for subsequent heart rate variability analysis.

RESULTS: The study included 79 volunteers enrolled in the 1st–2nd years of full-time university education. Females and males were assigned to group 1 (n = 41) and group 2 (n = 38), respectively. From the first (control) phase of the Trier Social Stress Test, differences in heart rate variability parameters were observed between groups despite low subjective stress reports. In the second phase, both groups demonstrated increased heart rate and low-frequency spectral power, along with decreased normalized RR interval duration and high-frequency spectral power. Reactivity phase showed the highest subjective stress ratings and maximal heart rate variability alterations compared with the control stage. An increase in heart rate (especially in group 1 during self-presentation), centralization index, vagosympathetic interaction index, low- and very-low-frequency spectral power, the difference between maximum and minimum RR intervals, as well as the standard deviation of the full set of RR intervals (predominantly in group 2) was noted. In addition, a decrease in the mean duration of the normalized RR interval and in the high-frequency spectral power was observed. By the fifth phase, with moderate subjective stress persisting, sympatho-parasympathetic balance was largely restored in both groups, with some sympathetic predominance in integral heart rate variability measures.

CONCLUSION: Thus, males showed a trophotropic pattern of changes in the activity of regulatory systems, characterized by moderate inhibition of vagal influences along with sympathoadrenal activation during acute psychosocial stress. In females, stress-induced heart rate variability alterations were more pronounced and ergotropic in nature.

About the authors

Sergey N. Tolstoguzov

University of Tyumen

Author for correspondence.
Email: s.n.tolstoguzov@utmn.ru
ORCID iD: 0000-0003-2332-7543
SPIN-code: 8187-1821

Cand. Sci. (Biology)

Russian Federation, Tyumen

Ksenia A. Shikova

University of Tyumen

Email: stud0000193319@utmn.ru
ORCID iD: 0009-0004-4270-2390
SPIN-code: 8734-1071
Russian Federation, Tyumen

Vyacheslav M. Gruk

University of Tyumen

Email: stud0000279574@utmn.ru
ORCID iD: 0009-0004-9584-2987
Russian Federation, Tyumen

Olga N. Lepunova

University of Tyumen

Email: o.n.lepunova@utmn.ru
ORCID iD: 0000-0001-5809-5805
SPIN-code: 4898-7014

Cand. Sci. (Biology)

Russian Federation, Tyumen

References

  1. Badr Y, Tariq U, Al-Shargie F, et al. A review on evaluating mental stress by deep learning using EEG signals. Neural Computing and Applications. 2024;36(21):12629–12654. doi: 10.1007/s00521-024-09809-5 EDN: INCXIW
  2. Bhatnagar S, Khandelwal S, Jain S, Vyawahare H. A deep learning approach for assessing stress levels in patients using electroencephalogram signals. Decision Analytics Journal. 2023;7:100211. doi: 10.1016/j.dajour.2023.100211 EDN: WAGXAJ
  3. Langer K, Jentsch VL, Wolf OT. Effects of acute stress on cognitive emotion regulation and underlying neuroendocrine mechanisms. Psychoneuroendocrinology. 2024;160:106722. doi: 10.1016/j.psyneuen.2023.106722 EDN: QMDCBJ
  4. Kausche FM, Carsten HP, Sobania KM, Riesel A. Fear and safety learning in anxiety- and stress-related disorders: an updated meta-analysis. Neuroscience & Biobehavioral Reviews. 2025;169:105983. doi: 10.1016/j.neubiorev.2024.105983 EDN: QEZEKG
  5. Gellisch M, Bablok M, Brand-Saberi B, Schäfer T. Neurobiological stress markers in educational research: a systematic review of physiological insights in health science education. Trends in Neuroscience and Education. 2024;37:100242. doi: 10.1016/j.tine.2024.100242 EDN: FGIMMY
  6. Demin DB. Response of the cardiovascular system to heart rate variability biofeedback intervention in adolescents with different autonomic nervous tone living in northern and southern regions. Ekologiya cheloveka (Human Ecology). 2023;30(5):375–384. doi: 10.17816/humeco321968 EDN: IHVBQW
  7. Krivonogova EV, Krivonogova OV, Poskotinova LV. Individual-typological features of the reactivity of EEG rhythms, cardiovascular system and lactoferrin level in the conditions of general air cooling of a person. Human Physiology. 2021;47(5):67–76. doi: 10.31857/S0131164621040068 EDN: MXAAAL
  8. Dimitriev DA, Saperova EV, Dimitriev AD, Salimov ER. The use of nonlinear parameters of heart rate variability for stress detection. Journal of Medical and Biological Research. 2021;9(3):265–274. doi: 10.37482/2687-1491-Z064 EDN: FZKHBC
  9. Pereira T, Almeida PR, Cunha JPS, Aguiar A. Heart rate variability metrics for fine-grained stress level assessment. Computer Methods and Programs in Biomedicine. 2017;148:71–80. doi: 10.1016/j.cmpb.2017.06.018 EDN: YFWBRL
  10. Spellenberg C, Heusser P, Büssing A, et al. Binary symbolic dynamics analysis to detect stress-associated changes of nonstationary heart rate variability. Scientific Reports. 2020;10(1):1–10. doi: 10.1038/s41598-020-72034-2 EDN: RXXBTC
  11. Kirschbaum C, Pirke KM, Hellhammer DH. The ‘Trier social stress test' — a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology. 1993;28(1-2):76–81. doi: 10.1159/000119004
  12. Vanhollebeke G, De Smet S, De Raedt R, et al. The neural correlates of psychosocial stress: a systematic review and meta-analysis of spectral analysis EEG studies. Neurobiology of Stress. 2022;18:100452. doi: 10.1016/j.ynstr.2022.100452 EDN: QOCFUG
  13. Pashkov AA, Dakhtin IS, Kharisova NS. Electroencephalographic biomarkers of experimentally induced stress. Bulletin of the South Ural State University: series "Psychology". 2017;10(4):68–82. doi: 10.14529/psy170407 EDN: YKYSPQ
  14. Frisch JU, Häusser JA, Mojzisch A. The Trier social stress test as a paradigm to study how people respond to threat in social interactions. Frontiers in Psychology. 2015;6:14. doi: 10.3389/fpsyg.2015.00014
  15. Castaldo R, Montesinos L, Melillo P, et al. Ultra-short term HRV features as surrogates of short term HRV: a case study on mental stress detection in real life. BMC Medical Informatics and Decision Making. 2019;19(1):1–13. doi: 10.1186/s12911-019-0742-y EDN: TSGZHU
  16. Tharion E, Parthasarathy S, Neelakantan N. Short-term heart rate variability measures in students during examinations. National Medical Journal of India. 2009;22(2):63–66.
  17. Lucini D, Norbiato G, Clerici M, Pagani M. Hemodynamic and autonomic adjustments to real life stress conditions in humans. Hypertension. 2002;39(1):184–188. doi: 10.1161/hy0102.100784
  18. Kim HG, Cheon EJ, Bai DS, et al. Stress and heart rate variability: a meta-analysis and review of the literature. Psychiatry Investigation. 2018;15(3):235–245. doi: 10.30773/pi.2017.08.17
  19. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task force of the European Society of cardiology and the North American Society of pacing and electrophysiology. European Heart Journal. 1996;17:354–381. Available from: https://www.escardio.org/static-file/Escardio/Guidelines/
  20. Baevsky RM, Ivanov GG, Chireikin LV, et al. Analysis of heart rate variability using various electrocardiographic systems (methodological recommendations). Journal of Arrhythmology. 2001;(24):65–87. (In Russ.) Available from: http://www.vestar.ru/atts/1267/24baevsky.pdf
  21. Kretova IG, Vedyasova OA, Komarova MV, Shiryaeva OI. Analysis and forecasting of reserve capabilities of the organism of students according to indices of heart rate variability. Hygiene and Sanitation. 2019;96(6):556–561. doi: 10.18821/0016-9900-2017-96-6-556-561 EDN: ZAPEEB
  22. Bek AT, Emeri G. Anxiety disorders and phobias: A cognitive approach. Saint Petersburg: Dialektika; 2020. (In Russ.) ISBN: 978-5-907203-51-8 Available from: https://djvu.online/file/w8vyYRlLn11kQ?ysclid=mdylwz3hle331630133
  23. Spitsin AP, Spitsina TA. Heart rate variability under conditions of neuropsychic stress. Hygiene and Sanitation. 2011;(4):65–68. EDN: ODSMYN
  24. Sammito S, Böckelmann I. Factors influencing heart rate variability. International Cardiovascular Forum Journal. 2016;6:18–22. doi: 10.17987/icfj.v6i0.242
  25. Storniolo JL, Correale L, Buzzachera CF, Peyré-Tartaruga LA. Editorial: New Perspectives and Insights on Heart Rate Variability in Exercise and Sports. Frontiers in Sports and Active Living. 2025;7:1574087. doi: 10.3389/fspor.2025.1574087 EDN: KUNSXA

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Changes in the vagosympathetic interaction index in males and females depending on the Trier test phase: *** statistically significant sex-related differences at p < 0.001; * at р < 0.05 (Mann–Whitney test); +++ statistically significant differences compared with the first phase (control) of the Trier test at р < 0.001; ++ at р < 0.01; + at р < 0.05 (Wilcoxon test); box boundaries correspond to the 25th and 75th percentiles; the line inside the box represents the median; the cross inside the box denotes the mean; whiskers indicate maximum and minimum values.

Download (189KB)
3. Fig. 2. Changes in the centralization index in males and females depending on the Trier test phase: *** statistically significant sex-related differences at р < 0.001; ** at р < 0.01 (Mann–Whitney test); +++ statistically significant differences compared with the first phase (control) of the Trier test at р < 0.001; ++ at р < 0.01; + at р < 0.05 (Wilcoxon test); box boundaries correspond to the 25th and 75th percentiles; the line inside the box represents the median; the cross inside the box denotes the mean; whiskers indicate maximum and minimum values.

Download (219KB)
4. Fig. 3. Changes in heart rate in males and females depending on the Trier test phase: *** statistically significant sex-related differences at p < 0.001 (Mann–Whitney test); +++ statistically significant differences compared with the first phase (control) of the Trier test at p < 0.001 (Wilcoxon test); box boundaries correspond to the 25th and 75th percentiles; the line inside the box represents the median; the cross inside the box denotes the mean; whiskers indicate maximum and minimum values.

Download (198KB)
5. Fig. 4. Changes in the stress index in males and females depending on the Trier test phase: *** statistically significant sex-related differences at p < 0.001 (Mann–Whitney test); +++ statistically significant differences compared with the first phase (control) of the Trier test at p < 0.001 (Wilcoxon test); box boundaries correspond to the 25th and 75th percentiles; the line inside the box represents the median; the cross inside the box denotes the mean; whiskers indicate maximum and minimum values.

Download (190KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».