使用人工胃肠道生物反应器系统实验建模儿童肠道菌群失调
- 作者: Chemisova O.S.1, Sedova D.A.1, Golovin S.N.1, Ermakov A.M.1
-
隶属关系:
- Don State Technical University
- 期: 卷 32, 编号 10 (2025)
- 页面: 694-704
- 栏目: ORIGINAL STUDY ARTICLES
- URL: https://ogarev-online.ru/1728-0869/article/view/356881
- DOI: https://doi.org/10.17816/humeco690049
- EDN: https://elibrary.ru/MTJMUA
- ID: 356881
如何引用文章
全文:
详细
论证。传统微生物培养方法无法再现体内肠道微生态中复杂的微生物间相互作用。因此,开发可用于儿童肠道菌群失调实验建模的现代生物反应器系统具有重要意义,可在无伦理限制条件下实现实验条件标准化与结果再现性。
目的。开发并验证一种基于人工胃肠道生物反应器系统的儿童肠道菌群失调实验建模方法,用于研究微生态紊乱的发病机制并评估干预措施的有效性。
方法。使用自动化人工胃肠道模拟系统,包括三个反应器(胃、十二指肠、结肠),并可精确控制温度、pH及厌氧条件。研究使用1例6岁儿童的粪便样本。观察期自将粪便悬液加入反应器后持续35天。验证标准为人工微生态的微生物谱与原始样本的临床微生物谱一致,以及关键菌群的稳定性。评价方法包括选择性培养与基于“Kolonoflor-16”试剂盒的定量PCR。主要菌群变异系数≤20%被设定为稳定性判定标准。
结果。原始粪便样本PCR与细菌学分析显示:存在明显优势菌群缺乏(乳酸杆菌及双歧杆菌减少)及条件致病菌过度生长,符合Ⅲ级肠道菌群失调特征。所建立的生物反应器模型成功再现了这种肠道菌群失调变化。结肠反应器总菌量在第8天为13.21±0.20 lg DNA copies/ml,第35天为13.38±0.09 lg DNA copies/ml,基线为13.30 lg DNA copies/ml。模型再现儿童肠道菌群失调主要特征:优势菌群减少(Lactobacillus spp., Bifidobacterium spp.)及条件致病菌增加(E. coli, C. perfringens, Enterobacter spp.)。自培养第2周起,各关键菌群的变异系数均低于20%。模型在35天观察期内能够稳定再现Ⅲ级肠道菌群失调。
结论。成功建立并验证了基于人工胃肠道系统的儿童肠道菌群失调实验建模方法。该模型为深入研究儿童肠道微生态紊乱的发病机制,以及在接近生理条件下开展益生菌、益生元及其他纠正性干预措施的筛选与疗效评估提供了新的可能。
作者简介
Olga S. Chemisova
Don State Technical University
编辑信件的主要联系方式.
Email: chemisova@inbox.ru
ORCID iD: 0000-0002-4059-2878
SPIN 代码: 1129-7436
Cand. Sci. (Biology)
俄罗斯联邦, Rostov-on-DonDarya A. Sedova
Don State Technical University
Email: dased0va@yandex.ru
ORCID iD: 0000-0003-1194-7251
SPIN 代码: 6197-7220
俄罗斯联邦, Rostov-on-Don
Sergey N. Golovin
Don State Technical University
Email: labbiobez@yandex.ru
ORCID iD: 0000-0002-1929-6345
SPIN 代码: 5345-4005
俄罗斯联邦, Rostov-on-Don
Alexey M. Ermakov
Don State Technical University
Email: amermakov@yandex.ru
ORCID iD: 0000-0002-9834-3989
SPIN 代码: 5358-3424
俄罗斯联邦, Rostov-on-Don
参考
- Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533. doi: 10.1371/journal.pbio.1002533
- Almeida A, Mitchell AL, Boland M, et al. A new genomic blueprint of the human gut microbiota. Nature. 2019;568(7753):499–504. doi: 10.1038/s41586-019-0965-1
- Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? a changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7(1):14. doi: 10.3390/microorganisms7010014
- Tamburini S, Shen N, Wu HC, Clemente JC. The microbiome in early life: implications for health outcomes. Nat Med. 2016;22(7):713–722. doi: 10.1038/nm.4142
- Voroshilina ES, Moskvina MV, Kirillov MYu, et al. Fundamentals of modern approaches to assessing gut microbiota in children. Neonatology: News, Views, Education. 2023;11(3):47–59. doi: 10.33029/2308-2402-2023-11-3-47-59 EDN: LAWLUP
- Kalashnikova IG, Nekrasova AI, Makarov VV, et al. Features of gut microbiota in atopic dermatitis and food allergy in children. Laboratory Diagnostics. Eastern Europe. 2024;13(S1):300–302. (In Russ.) EDN: BUFJCU
- Ma T, Bu S, Nzerem AC, et al. Association of the infant gut microbiome with temperament at nine months of age: a michigan cohort study. Microorganisms. 2024;12(1):214. doi: 10.3390/microorganisms12010214
- Schoultz I, Claesson MJ, Dominguez-Bello MG, et al. Gut microbiota development across the lifespan: Disease links and health-promoting interventions. J Intern Med. 2025;297(6):560–583. doi: 10.1111/joim.20089
- Kozlovsky AA. Topical aspects of intestinal dysbiosis in children. Pediatrics. Eastern Europe. 2022;10(4):576–590. doi: 10.34883/PI.2022.10.4.012 EDN: VPCQWL
- Zhu W, Zhang X, Wang D, et al. Simulator of the human intestinal microbial ecosystem (SHIME®): current developments, applications, and future prospects. Pharmaceuticals (Basel). 2024;17(12):1639. doi: 10.3390/ph17121639
- Marzorati M, Vanhoecke B, De Ryck T, et al. The HMI™ module: a new tool to study the Host-Microbiota Interaction in the human gastrointestinal tract in vitro. BMC Microbiol. 2014;14:133. doi: 10.1186/1471-2180-14-133
- Isenring J, Bircher L, Geirnaert A, Lacroix C. In vitro human gut microbiota fermentation models: opportunities, challenges, and pitfalls. Microbiome Res Rep. 2023;2(1):2. doi: 10.20517/mrr.2022.15
- Biagini F, Daddi C, Calvigioni M, et al. Designs and methodologies to recreate in vitro human gut microbiota models. Bio-des Manuf. 2022;6(10):298–318. doi: 10.1007/s42242-022-00210-6
- O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7(7):688–693. doi: 10.1038/sj.embor.7400731
- Brodkorb A, Egger L, Alminger M, et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat Protoc. 2019;14(4):991–1014. doi: 10.1038/s41596-018-0119-1
- Possemiers S, Verthé K, Uyttendaele S, Verstraete W. PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol. 2004;49(3):495–507. doi: 10.1016/j.femsec.2004.05.002
- Repetskaya MN, Burdina OM, Toropova EA. Dysbiotic bowel disorders in children under modern conditions. Medical Newsletter of Vyatka. 2017;(4):19–23. EDN: YLYIZI
- Zafar H, Saier MH Jr. Gut Bacteroides species in health and disease. Gut Microbes. 2021;13(1):1–20. doi: 10.1080/19490976.2020.1848158
- Muramatsu MK, Winter SE. Nutrient acquisition strategies by gut microbes. Cell Host Microbe. 2024;32(6):863–874. doi: 10.1016/j.chom.2024.05.011
- Sitkin SI, Vakhitov TYa, Tkachenko EI, et al. Gut microbiota in ulcerative colitis and celiac disease. Experimental and Clinical Gastroenterology Journal. 2017;(1):8–30. EDN: ZFVTVN
补充文件

