Changes in Insulin Resistance and Gastrointestinal Microbiology in Patients with Traumatic Syndrome

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: It is known that one of the basic processes developing in response to injury is insulin resistance. The mechanisms of development of insulin resistance at the present stage are not fully disclosed. There is an increasing amount of evidence indicating the role of the gastrointestinal microbiota in the development of insulin resistance.

AIM: Was to evaluate the dynamics of the triglyceride-glucose index in relation to the taxonomic composition of the microbiota of the gastrointestinal tract and blood in patients with combined musculoskeletal injury.

METHODS: 44 wounded with combined injury of the musculoskeletal system who were being treated at the clinic of military field surgery of the Military Medical Academy named after S.M. Kirov were examined. The patients underwent a standard examination with the calculation of an indirect indicator of insulin resistance, the triglyceride-glucose index. The microbiota of feces and blood was studied by sequencing 16S ribosomal ribonucleic acid.

RESULTS: The average value of the triglyceride-glucose index in the victims was 4.61 ± 0.22 units. In 79.5% of patients, the value of the triglyceride-glucose index exceeded 4.49 units, which indicates the presence of signs of insulin resistance. There were direct correlations of the triglyceride-glucose index with the level of total cholesterol, serum amylase, the presence of chronic pancreatitis, and a number of ultrasound parameters of the liver, gallbladder, and pancreas. The most significant direct links of the triglyceride-glucose index were established with the presence of Pseudoscardovia, Pyramidobacter, and Pediococcus in the intestinal microbiota, and with bacteria of the genera Bacillus and Pseudomonas in the blood serum. Moderate inverse associations of the triglyceride-glucose index with the presence of bacteria of the genera Scardovia, Actinomyces, and Allofournierella (synonym: Fournierella) in the feces were revealed, Butyricicoccaceae UCG-009, Lactobacillus crispatus wiggsiae not Scardovia species, In. blood serum — bacteria Bifidobacterium Rodova, Phascolarctobacterium, Hydrogenophilus, the type of Escherichia is not Phascolarctobacterium albertii faecium.

CONCLUSION: The established trends in the nature of changes in insulin resistance, depending on the timing of combat injury, indicate the dynamics of insulin resistance associated with the course of traumatic illness. Insulin resistance in the early period of traumatic illness, which develops in response to stress, blood loss, and tissue damage, can be considered as a compensatory and adaptive response within the framework of the concept of general adaptation syndrome, aimed primarily at eliminating energy deficiency. Therefore, it is necessary to conduct further research that can expand the understanding of the role of the bacterial microbiota as an important component of the gastrointestinal tract biotech complex in the development of metabolic changes in patients with injuries, as well as methods for their correction.

About the authors

Evgeny V. Kryukov

Kirov Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-8396-1936
SPIN-code: 3900-3441

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

Svetlana P. Salikova

Kirov Military Medical Academy

Author for correspondence.
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0003-4839-9578
SPIN-code: 2012-8481

MD, Dr. Sci. (Medicine), Associate Professor

Russian Federation, Saint Petersburg

Vladimir B. Grinevich

Kirov Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-1095-8787
SPIN-code: 1178-0242

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

Yuri A. Kravchuk

Kirov Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0001-8347-0531
SPIN-code: 6767-5189

MD, Dr. Sci. (Medicine), Associate Professor

Russian Federation, Saint Petersburg

Lyudmila S. Oreshko

Kirov Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-2726-9996
SPIN-code: 3158-7425

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

Denis V. Egorov

Kirov Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-3247-0600
SPIN-code: 6248-2023

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Julia A. Makarenko

Kirov Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0009-0000-6386-5739
Russian Federation, Saint Petersburg

Igor M. Samokhvalov

Kirov Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0003-1398-3467
SPIN-code: 4590-8088

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

Vadim I. Badalov

Kirov Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-8461-2252
SPIN-code: 9314-5608

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

Stanislav I. Sitkin

Almazov National Medical Research Centre; Institute of Experimental Medicine; Mechnikov North-Western State Medical University

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0003-0331-0963
SPIN-code: 3961-8815

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Saint Petersburg; Saint Petersburg; Saint Petersburg

Arseny N. Sorokin

Kirov Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0001-7921-667X
SPIN-code: 4620-7390

Applicant

Russian Federation, Saint Petersburg

Sergey N. Petrukov

Kirov Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0009-0009-2354-2885
SPIN-code: 4237-1913

Psychotherapist

Russian Federation, Saint Petersburg

References

  1. Eryukhin IA. Traumatic disease - general pathological concept or nosological category? N.N. Priorov Journal of Traumatology and Orthopedics. 1994;1(1):12–15. doi: 10.17816/vto63779 EDN: JLZUKB
  2. Samokhvalov IM, Sosyukin AE, Nemchenko NS, et al. Systemic inflammatory response is the body's adaptive response to injury. Bulletin of the Russian Military Medical Academy. 2009;4(28):91–95. EDN: KYKNBV
  3. Şimşek T, Şimşek HU, Cantürk NZ. Response to trauma and metabolic changes: posttraumatic metabolism. Ulus Cerrahi Derg. 2014;30(3):153–159. doi: 10.5152/UCD.2014.2653
  4. Belik EV, Gruzdeva OV. Insulin resistance: Unsolved issues of harm and use. Siberian Journal of Clinical and Experimental Medicine. 2019;34(4): 39–48. doi: 10.29001/2073-8552-2019-34-4-39-48 EDN: RTMGBK
  5. Tarasova IA, Shestakov AL, Nikoda VV. Post-operative insulin resistance. Diabetes mellitus. 2017;20(2):119–125. doi: 10.14341/7637 EDN: YRXACD
  6. Vieira-Lara MA, Reijne AC, Koshian S, et al. Age and diet modulate the insulin-sensitizing effects of exercise: A tracer-based oral glucose tolerance test. Diabetes. 2023;72(7):872–883. doi: 10.2337/db22-0746
  7. Grinevich VB, Tkacheva ON, Egshatyan LV, et al. Contribution of the gut microbiota to the pathogenesis of insulin resistance (literature review). Russian Journal of Preventive Medicine. 2015;18(1):54–58. doi: 10.17116/profmed201518154-58 EDN: TZIUWF
  8. Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008;6(4):299–304. doi: 10.1089/met.2008.0034
  9. Salazar J, Bermúdez V, Calvo M, et al. Optimal cutoff for the evaluation of insulin resistance through triglyceride-glucose index: A cross-sectional study in a Venezuelan population. F1000Res. 2017;6:1337. doi: 10.12688/f1000research.12170.3
  10. Ding X, Wang X, Wu J, et al. Triglyceride-glucose index and the incidence of atherosclerotic cardiovascular diseases: a meta-analysis of cohort studies. Cardiovasc Diabetol. 2021;20(1):76. doi: 10.1186/s12933-021-01268-9
  11. Zhou Z, Liu Q, Zheng M, et al. Comparative study on the predictive value of TG/HDL-C, TyG and TyG-BMI indices for 5-year mortality in critically ill patients with chronic heart failure: a retrospective study. Cardiovasc Diabetol. 2024;23(1):213. doi: 10.1186/s12933-024-02308-w
  12. Liu X, Tan Z, Huang Y, et al. Relationship between the triglyceride-glucose index and risk of cardiovascular diseases and mortality in the general population: a systematic review and meta-analysis. Cardiovasc Diabetol. 2022;21(1):124. doi: 10.1186/s12933-022-01546-0
  13. Gounden V, Devaraj S, Jialal I. The role of the triglyceride-glucose index as a biomarker of cardio-metabolic syndromes. Lipids Health Dis. 2024;23(1):416. doi: 10.1186/s12944-024-02412-6
  14. Avagimyan A, Pogosova N, Fogacci F, et al. Triglyceride-glucose index (TyG) as a novel biomarker in the era of cardiometabolic medicine. Int J Cardiol. 2025;418:132663. doi: 10.1016/j.ijcard.2024.132663
  15. Liu D, Ren B, Tian Y, et al. Association of the TyG index with prognosis in surgical intensive care patients: data from the MIMIC-IV. Cardiovasc Diabetol. 2024;23(1):193. doi: 10.1186/s12933-024-02293-0
  16. Grinevich VB, Bunenkova GF, Salikova SP, et al. Visualize correlations using heat maps in R. Vrach (The Doctor). 2024;35(10):34–36. doi: 10.29296/25877305-2024-10-07 EDN: LKLBGC
  17. Zhang S, Fan T, Wang L, et al. Impact of the triglyceride-glucose index on 28-day mortality in non-diabetic critically Ill patients with sepsis: a retrospective cohort analysis. BMC Infect Dis. 2024;24(1):785. doi: 10.1186/s12879-024-09711-4
  18. Boos CJ, Schofield S, Bull AMJ, et al. ADVANCE Study. The relationship between combat-related traumatic amputation and subclinical cardiovascular risk. Int J Cardiol. 2023;390:131227. doi: 10.1016/j.ijcard.2023.131227
  19. Liu L, Zhang J, Cheng Y, et al. Gut microbiota: A new target for T2DM prevention and treatment. Front Endocrinol. 2022;13:958218. doi: 10.3389/fendo.2022.958218
  20. Gong J, Zhang Q, Hu R, et al. Effects of Prevotella copri on insulin, gut microbiota and bile acids. Gut Microbes. 2024;16(1):2340487. doi: 10.1080/19490976.2024.2340487
  21. Semo D, Reinecke H, Godfrey R. Gut microbiome regulates inflammation and insulin resistance: a novel therapeutic target to improve insulin sensitivity. Signal Transduct Target Ther. 2024;9(1):35. doi: 10.1038/s41392-024-01746-y
  22. Takeuchi T, Kubota T, Nakanishi Y, et al. Gut microbial carbohydrate metabolism contributes to insulin resistance. Nature. 2023;621(7978): 389–395. doi: 10.1038/s41586-023-06466-x
  23. Patangia DV, Anthony Ryan C, Dempsey E, et al. Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen. 2022;11(1):e1260. doi: 10.1002/mbo3.1260
  24. Howard BM, Kornblith LZ, Christie SA, et al. Characterizing the gut microbiome in trauma: Significant changes in microbial diversity occur early after severe injury. Trauma Surg Acute Care Open. 2017;2(1):e000108. doi: 10.1136/tsaco-2017-000108
  25. Munley JA, Kirkpatrick SL, Gillies GS, et al. The Intestinal Microbiome after Traumatic Injury. Microorganisms. 2023;11(8):1990. doi: 10.3390/microorganisms11081990
  26. Munley JA, Park G, Kelly LS, et al. Persistence and sexual dimorphism of gut dysbiosis and pathobiome after sepsis and trauma. Ann Surg. 2024;280(3):491–503. doi: 10.1097/SLA.0000000000006385
  27. Kameda M, Abiko Y, Washio J, et al. Sugar metabolism of Scardovia wiggsiae, a novel caries-associated bacterium. Front Microbiol. 2020;11:479. doi: 10.3389/fmicb.2020.00479
  28. Zhao F, Dong T, Yuan K-Y, et al. Shifts in the bacterial community of supragingival plaque associated with metabolic-associated fatty liver disease. Front Cell Infect Microbiol. 2020;10:581888. doi: 10.3389/fcimb.2020.581888
  29. Pan L-L, Ren Z-N, Yang J, et al. Gut microbiota controls the development of chronic pancreatitis: A critical role of short-chain fatty acids-producing Gram-positive bacteria. Acta Pharm Sin B. 2023;13(10):4202–4216. doi: 10.1016/j.apsb.2023.08.002
  30. Gurung M, Li Z, You H, et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. 2020;51:102590. doi: 10.1016/j.ebiom.2019.11.051
  31. Memarrast F, Ghafouri-Fard S, Kolivand S, et al. Comparative evaluation of probiotics effects on plasma glucose, lipid, and insulin levels in streptozotocin-induced diabetic rats. Diabetes Metab Res Rev. 2017;33(7)e2912. doi: 10.1002/dmrr.2912
  32. Sciarra F, Franceschini E, Campolo F, et al. The diagnostic potential of the human blood microbiome: Are we dreaming or awake? Int J Mol Sci. 2023;24(13):10422. doi: 10.3390/ ijms241310422
  33. Nikitenko VI, Stadnikov AA, Kopylov VA. Bacterial translocation from the gastrointestinal tract in healthy and injured rats. J Wound Care. 2011;20(3):114–122. doi: 10.12968/jowc.2011.20.3.114
  34. Tan CCS, Ko KKK, Chen H, et al. No evidence for a common blood microbiome based on a population study of 9,770 healthy humans. Nat Microbiol. 2023;8(5):973–985. doi: 10.1038/s41564-023-01350-w
  35. Massier L, Musat N, Stumvoll M, et al. Tissue-resident bacteria in metabolic diseases: emerging evidence and challenges. Nat Metab. 2024;6(7):1209–1224. doi: 10.1038/s42255-024-01065-0
  36. Ehling-Schulz M, Lereclus D, Koehler TM. The Bacillus cereus group: Bacillus species with pathogenic potential. Microbiol Spectr. 2019;7(3): gpp3-0032-2018. doi: 10.1128/microbiolspec.GPP3-0032-2018
  37. Amar J, Serino M, Lange C, et al. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia. 2011;54(12):3055–3061. doi: 10.1007/s00125-011-2329-8
  38. Velmurugan G, Dinakaran V, Rajendhran J, Swaminathan K. Blood microbiota and circulating microbial metabolites in diabetes and cardiovascular disease. Trends Endocrinol Metab. 2020;31(11):835–847. doi: 10.1016/j.tem.2020.01.013

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Associations between the triglyceride–glucose (TyG) index and glucose level (а), time from injury (b), number of surgeries (с), and antibiotic therapy courses (d).

Download (617KB)
3. Fig. 2. Heat map of the prevalence of bacterial phyla in stool samples of patients with multiple musculoskeletal injuries.

Download (1MB)
4. Fig. 3. Relative prevalence of main microbiota phyla in stool samples of patients with multiple musculoskeletal injuries.

Download (162KB)
5. Fig. 4. Relative prevalence of main microbiota phyla in serum samples of patients with multiple musculoskeletal injuries.

Download (191KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».