Changes in Insulin Resistance and Gastrointestinal Microbiology in Patients with Traumatic Syndrome
- Authors: Kryukov E.V.1, Salikova S.P.1, Grinevich V.B.1, Kravchuk Y.A.1, Oreshko L.S.1, Egorov D.V.1, Makarenko J.A.1, Samokhvalov I.M.1, Badalov V.I.1, Sitkin S.I.2,3,4, Sorokin A.N.1, Petrukov S.N.1
-
Affiliations:
- Kirov Military Medical Academy
- Almazov National Medical Research Centre
- Institute of Experimental Medicine
- Mechnikov North-Western State Medical University
- Issue: Vol 27, No 2 (2025)
- Pages: 153-164
- Section: Original Study Article
- URL: https://ogarev-online.ru/1682-7392/article/view/310242
- DOI: https://doi.org/10.17816/brmma677239
- EDN: https://elibrary.ru/XRLYKG
- ID: 310242
Cite item
Abstract
BACKGROUND: It is known that one of the basic processes developing in response to injury is insulin resistance. The mechanisms of development of insulin resistance at the present stage are not fully disclosed. There is an increasing amount of evidence indicating the role of the gastrointestinal microbiota in the development of insulin resistance.
AIM: Was to evaluate the dynamics of the triglyceride-glucose index in relation to the taxonomic composition of the microbiota of the gastrointestinal tract and blood in patients with combined musculoskeletal injury.
METHODS: 44 wounded with combined injury of the musculoskeletal system who were being treated at the clinic of military field surgery of the Military Medical Academy named after S.M. Kirov were examined. The patients underwent a standard examination with the calculation of an indirect indicator of insulin resistance, the triglyceride-glucose index. The microbiota of feces and blood was studied by sequencing 16S ribosomal ribonucleic acid.
RESULTS: The average value of the triglyceride-glucose index in the victims was 4.61 ± 0.22 units. In 79.5% of patients, the value of the triglyceride-glucose index exceeded 4.49 units, which indicates the presence of signs of insulin resistance. There were direct correlations of the triglyceride-glucose index with the level of total cholesterol, serum amylase, the presence of chronic pancreatitis, and a number of ultrasound parameters of the liver, gallbladder, and pancreas. The most significant direct links of the triglyceride-glucose index were established with the presence of Pseudoscardovia, Pyramidobacter, and Pediococcus in the intestinal microbiota, and with bacteria of the genera Bacillus and Pseudomonas in the blood serum. Moderate inverse associations of the triglyceride-glucose index with the presence of bacteria of the genera Scardovia, Actinomyces, and Allofournierella (synonym: Fournierella) in the feces were revealed, Butyricicoccaceae UCG-009, Lactobacillus crispatus wiggsiae not Scardovia species, In. blood serum — bacteria Bifidobacterium Rodova, Phascolarctobacterium, Hydrogenophilus, the type of Escherichia is not Phascolarctobacterium albertii faecium.
CONCLUSION: The established trends in the nature of changes in insulin resistance, depending on the timing of combat injury, indicate the dynamics of insulin resistance associated with the course of traumatic illness. Insulin resistance in the early period of traumatic illness, which develops in response to stress, blood loss, and tissue damage, can be considered as a compensatory and adaptive response within the framework of the concept of general adaptation syndrome, aimed primarily at eliminating energy deficiency. Therefore, it is necessary to conduct further research that can expand the understanding of the role of the bacterial microbiota as an important component of the gastrointestinal tract biotech complex in the development of metabolic changes in patients with injuries, as well as methods for their correction.
Full Text
##article.viewOnOriginalSite##About the authors
Evgeny V. Kryukov
Kirov Military Medical Academy
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-8396-1936
SPIN-code: 3900-3441
MD, Dr. Sci. (Medicine), Professor
Russian Federation, Saint PetersburgSvetlana P. Salikova
Kirov Military Medical Academy
Author for correspondence.
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0003-4839-9578
SPIN-code: 2012-8481
MD, Dr. Sci. (Medicine), Associate Professor
Russian Federation, Saint PetersburgVladimir B. Grinevich
Kirov Military Medical Academy
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-1095-8787
SPIN-code: 1178-0242
MD, Dr. Sci. (Medicine), Professor
Russian Federation, Saint PetersburgYuri A. Kravchuk
Kirov Military Medical Academy
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0001-8347-0531
SPIN-code: 6767-5189
MD, Dr. Sci. (Medicine), Associate Professor
Russian Federation, Saint PetersburgLyudmila S. Oreshko
Kirov Military Medical Academy
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-2726-9996
SPIN-code: 3158-7425
MD, Dr. Sci. (Medicine), Professor
Russian Federation, Saint PetersburgDenis V. Egorov
Kirov Military Medical Academy
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-3247-0600
SPIN-code: 6248-2023
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgJulia A. Makarenko
Kirov Military Medical Academy
Email: vmeda-nio@mil.ru
ORCID iD: 0009-0000-6386-5739
Russian Federation, Saint Petersburg
Igor M. Samokhvalov
Kirov Military Medical Academy
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0003-1398-3467
SPIN-code: 4590-8088
MD, Dr. Sci. (Medicine), Professor
Russian Federation, Saint PetersburgVadim I. Badalov
Kirov Military Medical Academy
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-8461-2252
SPIN-code: 9314-5608
MD, Dr. Sci. (Medicine), Professor
Russian Federation, Saint PetersburgStanislav I. Sitkin
Almazov National Medical Research Centre; Institute of Experimental Medicine; Mechnikov North-Western State Medical University
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0003-0331-0963
SPIN-code: 3961-8815
MD, Cand. Sci. (Medicine), Associate Professor
Russian Federation, Saint Petersburg; Saint Petersburg; Saint PetersburgArseny N. Sorokin
Kirov Military Medical Academy
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0001-7921-667X
SPIN-code: 4620-7390
Applicant
Russian Federation, Saint PetersburgSergey N. Petrukov
Kirov Military Medical Academy
Email: vmeda-nio@mil.ru
ORCID iD: 0009-0009-2354-2885
SPIN-code: 4237-1913
Psychotherapist
Russian Federation, Saint PetersburgReferences
- Eryukhin IA. Traumatic disease - general pathological concept or nosological category? N.N. Priorov Journal of Traumatology and Orthopedics. 1994;1(1):12–15. doi: 10.17816/vto63779 EDN: JLZUKB
- Samokhvalov IM, Sosyukin AE, Nemchenko NS, et al. Systemic inflammatory response is the body's adaptive response to injury. Bulletin of the Russian Military Medical Academy. 2009;4(28):91–95. EDN: KYKNBV
- Şimşek T, Şimşek HU, Cantürk NZ. Response to trauma and metabolic changes: posttraumatic metabolism. Ulus Cerrahi Derg. 2014;30(3):153–159. doi: 10.5152/UCD.2014.2653
- Belik EV, Gruzdeva OV. Insulin resistance: Unsolved issues of harm and use. Siberian Journal of Clinical and Experimental Medicine. 2019;34(4): 39–48. doi: 10.29001/2073-8552-2019-34-4-39-48 EDN: RTMGBK
- Tarasova IA, Shestakov AL, Nikoda VV. Post-operative insulin resistance. Diabetes mellitus. 2017;20(2):119–125. doi: 10.14341/7637 EDN: YRXACD
- Vieira-Lara MA, Reijne AC, Koshian S, et al. Age and diet modulate the insulin-sensitizing effects of exercise: A tracer-based oral glucose tolerance test. Diabetes. 2023;72(7):872–883. doi: 10.2337/db22-0746
- Grinevich VB, Tkacheva ON, Egshatyan LV, et al. Contribution of the gut microbiota to the pathogenesis of insulin resistance (literature review). Russian Journal of Preventive Medicine. 2015;18(1):54–58. doi: 10.17116/profmed201518154-58 EDN: TZIUWF
- Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008;6(4):299–304. doi: 10.1089/met.2008.0034
- Salazar J, Bermúdez V, Calvo M, et al. Optimal cutoff for the evaluation of insulin resistance through triglyceride-glucose index: A cross-sectional study in a Venezuelan population. F1000Res. 2017;6:1337. doi: 10.12688/f1000research.12170.3
- Ding X, Wang X, Wu J, et al. Triglyceride-glucose index and the incidence of atherosclerotic cardiovascular diseases: a meta-analysis of cohort studies. Cardiovasc Diabetol. 2021;20(1):76. doi: 10.1186/s12933-021-01268-9
- Zhou Z, Liu Q, Zheng M, et al. Comparative study on the predictive value of TG/HDL-C, TyG and TyG-BMI indices for 5-year mortality in critically ill patients with chronic heart failure: a retrospective study. Cardiovasc Diabetol. 2024;23(1):213. doi: 10.1186/s12933-024-02308-w
- Liu X, Tan Z, Huang Y, et al. Relationship between the triglyceride-glucose index and risk of cardiovascular diseases and mortality in the general population: a systematic review and meta-analysis. Cardiovasc Diabetol. 2022;21(1):124. doi: 10.1186/s12933-022-01546-0
- Gounden V, Devaraj S, Jialal I. The role of the triglyceride-glucose index as a biomarker of cardio-metabolic syndromes. Lipids Health Dis. 2024;23(1):416. doi: 10.1186/s12944-024-02412-6
- Avagimyan A, Pogosova N, Fogacci F, et al. Triglyceride-glucose index (TyG) as a novel biomarker in the era of cardiometabolic medicine. Int J Cardiol. 2025;418:132663. doi: 10.1016/j.ijcard.2024.132663
- Liu D, Ren B, Tian Y, et al. Association of the TyG index with prognosis in surgical intensive care patients: data from the MIMIC-IV. Cardiovasc Diabetol. 2024;23(1):193. doi: 10.1186/s12933-024-02293-0
- Grinevich VB, Bunenkova GF, Salikova SP, et al. Visualize correlations using heat maps in R. Vrach (The Doctor). 2024;35(10):34–36. doi: 10.29296/25877305-2024-10-07 EDN: LKLBGC
- Zhang S, Fan T, Wang L, et al. Impact of the triglyceride-glucose index on 28-day mortality in non-diabetic critically Ill patients with sepsis: a retrospective cohort analysis. BMC Infect Dis. 2024;24(1):785. doi: 10.1186/s12879-024-09711-4
- Boos CJ, Schofield S, Bull AMJ, et al. ADVANCE Study. The relationship between combat-related traumatic amputation and subclinical cardiovascular risk. Int J Cardiol. 2023;390:131227. doi: 10.1016/j.ijcard.2023.131227
- Liu L, Zhang J, Cheng Y, et al. Gut microbiota: A new target for T2DM prevention and treatment. Front Endocrinol. 2022;13:958218. doi: 10.3389/fendo.2022.958218
- Gong J, Zhang Q, Hu R, et al. Effects of Prevotella copri on insulin, gut microbiota and bile acids. Gut Microbes. 2024;16(1):2340487. doi: 10.1080/19490976.2024.2340487
- Semo D, Reinecke H, Godfrey R. Gut microbiome regulates inflammation and insulin resistance: a novel therapeutic target to improve insulin sensitivity. Signal Transduct Target Ther. 2024;9(1):35. doi: 10.1038/s41392-024-01746-y
- Takeuchi T, Kubota T, Nakanishi Y, et al. Gut microbial carbohydrate metabolism contributes to insulin resistance. Nature. 2023;621(7978): 389–395. doi: 10.1038/s41586-023-06466-x
- Patangia DV, Anthony Ryan C, Dempsey E, et al. Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen. 2022;11(1):e1260. doi: 10.1002/mbo3.1260
- Howard BM, Kornblith LZ, Christie SA, et al. Characterizing the gut microbiome in trauma: Significant changes in microbial diversity occur early after severe injury. Trauma Surg Acute Care Open. 2017;2(1):e000108. doi: 10.1136/tsaco-2017-000108
- Munley JA, Kirkpatrick SL, Gillies GS, et al. The Intestinal Microbiome after Traumatic Injury. Microorganisms. 2023;11(8):1990. doi: 10.3390/microorganisms11081990
- Munley JA, Park G, Kelly LS, et al. Persistence and sexual dimorphism of gut dysbiosis and pathobiome after sepsis and trauma. Ann Surg. 2024;280(3):491–503. doi: 10.1097/SLA.0000000000006385
- Kameda M, Abiko Y, Washio J, et al. Sugar metabolism of Scardovia wiggsiae, a novel caries-associated bacterium. Front Microbiol. 2020;11:479. doi: 10.3389/fmicb.2020.00479
- Zhao F, Dong T, Yuan K-Y, et al. Shifts in the bacterial community of supragingival plaque associated with metabolic-associated fatty liver disease. Front Cell Infect Microbiol. 2020;10:581888. doi: 10.3389/fcimb.2020.581888
- Pan L-L, Ren Z-N, Yang J, et al. Gut microbiota controls the development of chronic pancreatitis: A critical role of short-chain fatty acids-producing Gram-positive bacteria. Acta Pharm Sin B. 2023;13(10):4202–4216. doi: 10.1016/j.apsb.2023.08.002
- Gurung M, Li Z, You H, et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. 2020;51:102590. doi: 10.1016/j.ebiom.2019.11.051
- Memarrast F, Ghafouri-Fard S, Kolivand S, et al. Comparative evaluation of probiotics effects on plasma glucose, lipid, and insulin levels in streptozotocin-induced diabetic rats. Diabetes Metab Res Rev. 2017;33(7)e2912. doi: 10.1002/dmrr.2912
- Sciarra F, Franceschini E, Campolo F, et al. The diagnostic potential of the human blood microbiome: Are we dreaming or awake? Int J Mol Sci. 2023;24(13):10422. doi: 10.3390/ ijms241310422
- Nikitenko VI, Stadnikov AA, Kopylov VA. Bacterial translocation from the gastrointestinal tract in healthy and injured rats. J Wound Care. 2011;20(3):114–122. doi: 10.12968/jowc.2011.20.3.114
- Tan CCS, Ko KKK, Chen H, et al. No evidence for a common blood microbiome based on a population study of 9,770 healthy humans. Nat Microbiol. 2023;8(5):973–985. doi: 10.1038/s41564-023-01350-w
- Massier L, Musat N, Stumvoll M, et al. Tissue-resident bacteria in metabolic diseases: emerging evidence and challenges. Nat Metab. 2024;6(7):1209–1224. doi: 10.1038/s42255-024-01065-0
- Ehling-Schulz M, Lereclus D, Koehler TM. The Bacillus cereus group: Bacillus species with pathogenic potential. Microbiol Spectr. 2019;7(3): gpp3-0032-2018. doi: 10.1128/microbiolspec.GPP3-0032-2018
- Amar J, Serino M, Lange C, et al. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia. 2011;54(12):3055–3061. doi: 10.1007/s00125-011-2329-8
- Velmurugan G, Dinakaran V, Rajendhran J, Swaminathan K. Blood microbiota and circulating microbial metabolites in diabetes and cardiovascular disease. Trends Endocrinol Metab. 2020;31(11):835–847. doi: 10.1016/j.tem.2020.01.013
Supplementary files
