Теплопотери зданий и формирование подземного городского острова тепла
- Авторы: Демежко Д.Ю.1, Хацкевич Б.Д.1, Факаева Н.Р.1, Горностаева А.А.1, Антипин А.Н.1
-
Учреждения:
- Институт геофизики им. Ю.П. Булашевича УрО РАН
- Выпуск: Том 25, № 5 (2025)
- Страницы: 1201-1215
- Раздел: Статьи
- URL: https://ogarev-online.ru/1681-9004/article/view/359047
- DOI: https://doi.org/10.24930/2500-302X-2025-25-5-1201-1215
- EDN: https://elibrary.ru/IQPYYL
- ID: 359047
Цитировать
Полный текст
Аннотация
Об авторах
Д. Ю. Демежко
Институт геофизики им. Ю.П. Булашевича УрО РАН
Email: ddem54@inbox.ru
Б. Д. Хацкевич
Институт геофизики им. Ю.П. Булашевича УрО РАН
Н. Р. Факаева
Институт геофизики им. Ю.П. Булашевича УрО РАН
А. А. Горностаева
Институт геофизики им. Ю.П. Булашевича УрО РАН
А. Н. Антипин
Институт геофизики им. Ю.П. Булашевича УрО РАН
Список литературы
-
Адушкин В.В., Спивак А.А., Овчинников В.М., Соловьев С.П., Спунгин В.Г. (1995) Геоэкологический контроль за геофизическими полями мегаполиса. Геоэкология, (2), 44-56. Анохин А.А., Житин Д.В., Краснов А.И., Лачининский С.С. (2014) Современные тенденции динамики численности населения городов России. Вестн. Санкт-Петербургского ун-та. Науки о Земле, (4), 167-179. Белоусова А.П., Проскурина И.В. (2008). Принципы районирования территории по степени опасности и рисков загрязнения подземных вод. Водные ресурсы, 35(1), 110-122. Ватин Н.И., Немова Д.В., Рымкевич П.П., Горшков А.С. (2012) Влияние уровня тепловой защиты ограждающих конструкций на величину потерь тепловой энергии в здании. Инженерно-строительный журнал, (8), 4-14. https://doi.org/10.5862/MCE.34.1 Горностаева А.А., Демежко Д.Ю., Хацкевич Б.Д., Вдовин А.Г., Факаева Н.Р. (2024) Влияние зданий на под земное тепловое поле г. Екатеринбург. Геофизиче ские процессы и биосфера, 23(2), 12-24. https://doi.org/10.21455/GPB2024.2-2 Демежко Д.Ю., Горностаева А.А., Хацкевич Б.Д., Вдовин А.Г., Факаева Н.Р. (2024) Подземный городской остров тепла Екатеринбурга. Литосфера, 24(3), 566-581. https://doi.org/10.24930/2500-302X-2024-24-3-566-581 Коридалин В.Е., Кузьмина Н.В., Осика В.И., Попов Е.И., Токмаков В.А. (1985) Сейсмические шумы индустриального города. Докл. АН СССР, 280(5), 1094-1097. Спивак А.А., Локтев Д.Н., Рыбнов Ю.С., Соловьев С.П., Харламов В.А. (2016) Геофизические поля мегаполиса. Геофизические процессы и биосфера, 15(2), 39-54. Шулейкин В.Н. (2014) Пары воды, атмосферное элек тричество и поступление радона в приповерхностные слои грунта и атмосферу. Геофизические процессы и биосфера, 13(3), 31-41. Arning E., Kölling M., Schulz H.D., Panteleit B., Reich ling J. (2006) Einfluss oberflachennaher Warmegewin nung auf geochemische Prozesse im Grundwasserleiter. Grundwasser, 11(1), 27-39. Attard G., Rossier Y., Winiarski T., Eisenlohr L. (2016) Deterministic modeling of the impact of underground structures on urban groundwater temperature. Sci. Total Env., 572, 986-994. https://doi.org/10.1016/j.scitotenv.2016.07.229 Bayer P., Attard G., Blum P., Menberg K. (2019) The geo thermal potential of cities Renew. Sustain. Energy Rev., 106, 17-30. https://doi.org/10.1016/j.rser.2019.02.019 Bayer P., Rivera J.A., Schweizer D., Schärli U., Blum P., Ry bach L. (2016) Extracting past atmospheric warming and urban heating effects from borehole temperature pro files. Geothermics, 64, 289-299. http://doi.org/10.1016/j.geothermics.2016.06.011 Benz S.A., Bayer P., Blum P., Hamamoto H., Arimoto H., Taniguchi M. (2018) Comparing anthropogenic heat input and heat accumulation in the subsurface of Osaka, Japan. Sci. Total Env ., 643, 1127-1136. https://doi.org/10.1016/j.scitotenv.2018.06.253 Benz S.A., Bayer P., Menberg K., Jung S., Blum P. (2015) Spatial resolution of anthropogenic heat fluxes into ur ban aquifers. Sci. Total Env., 524, 427-439. https://doi.org/10.1016/j.scitotenv.2015.04.003 Bidarmaghz A., Choudhary R., Soga K., Terrington R.L., Kessler H., Thorpe S. (2020) Large-scale urban under ground hydro-thermal modelling – а case study of the Royal Borough of Kensington and Chelsea, London.Sci. Total Env., 700, 134955. https://doi.org/10.1016/j.scitotenv.2019.134955 Blum P., Menberg K., Koch F., Benz S.A., Tissen C., Hem merle H., Bayer P. (2021) Is thermal use of groundwater a pollution? J. Contaminant hydrol., 239, 103791. https://doi.org/10.1016/j.jconhyd.2021.103791 Brielmann H., Griebler C., Schmidt S.I., Michel R., Lueders T. (2009) Effects of thermal energy discharge on shallow groundwater ecosystems. FEMS Microbiol. Ecol., 68(3), 273-286. https://doi.org/10.1111/j.1574-6941.2009.00674.x Brons H.J., Griffioen J., Appelo C.A.J., Zehnder A.J.B. (1991) (Bio)geochemical reactions in aquifer material from a thermal energy storage site. Water Res ., 25(6), 729-736. Castiello G., Florio G., Grimaldi M., Fedi M. (2010) En hanced methods for interpreting microgravity anomalies in urban areas. First Break, 28(8), 93-98. http://doi.org/10.3997/1365-2397.28.8.40741 Chandler T.J. (1976) The Climate of the British Isles. Boston: Addison–Wesley Longman Ltd, 390 p. Chu Z., Loria A.F.R. (2024) Modeling underground climate change across a city based on data about a building block. Sustain. Cities Soc., 114, 105775. https://doi.org/10.1016/j.scs.2024.105775 Dědeček P., Šafanda J., Rajver D. (2012) Detection and quantification of local anthropogenic and regional climatic transient signals in temperature logs from Czechia and Slovenia. Climatic change, 113, 787-801. https://doi.org/10.1007/s10584-011-0373-5 Ferguson G., Woodbury A.D. (2004) Subsurface heat flow in an urban environment. J. Geophys. Res., 109, B02402. https://doi.org/10.1029/2003JB002715 Hähnlein S., Bayer P., Ferguson G., Blum P. (2013) Sustain ability and policy for the thermal use of shallow geo thermal energy. Energy Policy, 59, 914-925. https://doi.org/10.1016/j.enpol.2013.04.040 Hemmerle H., Ferguson G., Blum P., Bayer P. (2022) The evolution of the geothermal potential of a subsurface ur ban heat island. Env. Res. Lett., 17(8), 084018. https://doi.org/10.1088/1748-9326/ac7e60 Jung N., Paiho S., Shemeikka J., Lahdelma R., Airaksinen M. (2018) Energy performance analysis of an office build ing in three climate zones. Energy and Buildings, 158, 1023-1035. https://doi.org/10.1016/j.enbuild.2017.10.030 Kim S.W., Brown R.D. (2021) Urban heat island (UHI) in tensity and magnitude estimations: A systematic liter ature review. Sci. Total Env., 779, 146389. https://doi.org/10.1016/j.scitotenv.2021.146389 Lokoshchenko M.A. (2014) Urban ‘heat island’ in Moscow. Urban Climate, 10, 550-562. https://doi.org/10.1016/j.uclim.2014.01.008 Loria A.F.R., Thota A., Thomas A.M., Friedle N., Lautenberg J.M., Song E.C. (2022) Subsurface heat is land across the Chicago Loop district: Analysis of localized drivers. Urban Climate, 44, 101211. https://doi.org/10.1016/j.uclim.2022.101211 Luo Z., Asproudi C. (2015) Subsurface urban heat island and its effects on horizontal ground-source heat pump potential under climate change. App. Thermal Eng., 90, 530 537. https://doi.org/10.1016/j.applthermaleng.2015.07.025 Menberg K., Bayer P., Zosseder K., Rumohr S., Blum P. (2013) Subsurface urban heat islands in German cities. Sci. Total Env., 442, 123-133. https://doi.org/10.1016/j.scitotenv.2012.10.043 Mohajerani A., Bakaric J., Jeffrey-Bailey T. (2017) The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J. Environ. Manage., 197, 522-538. https://doi.org/10.1016/j.jenvman.2017.03.095 Oke T.R. (1973) City size and the urban heat island. Atmospheric Env. (1967), 7(8), 769-779. https://doi.org/10.1016/0004-6981(73)90140-6 Previati A., Epting J., Crosta G.B. (2022) The subsurface ur ban heat island in Milan (Italy) – A modeling approach covering present and future thermal effects on ground water regimes. Sci. Total Env., 810, 152119. https://doi.org/10.1016/j.scitotenv.2021.152119 Schweighofer J.A., Wehrl M., Baumgärtel S., Rohn J. (2021) Detecting groundwater temperature shifts of a subsur face urban heat island in SE Germany. Water, 13(10), 1417. https://doi.org/10.3390/w13101417 Smith M., Hargroves K.C., Stasinopoulos P., Stephens R., Desha C., Hargroves S. (2007) Energy Transformed: Sustainable energy solutions for climate change mitiga tion. Brisbane, QUT ePrints, 600 p. Stewart I.D., Krayenhoff E.S., Voogt J.A., Lachapelle J.A., Allen M.A., Broadbent A.M. (2021) Time evolution of the surface urban heat island. Earth’s Future, 9(10), p.e2021EF002178. https://doi.org/10.1029/2021EF002178 Taniguchi M. (1993) Evaluation of vertical groundwater fluxes and thermal properties of aquifers based on transient temperature–depth profiles. Water Resources Res., 29(7), 2021-2026. https://doi.org/10.1029/93WR00541 Tien P.W., Wei S., Liu T., Calautit J., Darkwa J., Wood C. (2021) A deep learning approach towards the detection and recognition of opening of windows for effective management of building ventilation heat losses and reducing space heating demand. Renewable Energy, 177, 603-625. https://doi.org/10.1016/j.renene.2021.05.155 Tzavali A., Paravantis J.P., Mihalakakou G., Fotiadi A., Stigka E. (2015) Urban heat island intensity: A litera ture review. Fresenius Envir. Bull., 24(12b), 4537-4554. Visser P.W., Henk K., Bense V., Emiel B. (2020) Impacts of progressive urban expansion on subsurface temper atures in the city of Amsterdam (The Netherlands). hy drogeol. J., 28(5), 1755-1772. https://doi.org/10.1007/s10040-020-02150-w Westaway R., Scotney P.M., Younger P.L., Boyce A.J. (2015) Subsurface absorption of anthropogenic warming of the land surface: The case of the world’s largest brickworks (Stewartby, Bedfordshire, UK). Sci. Total Env., 508, 585-603. https://doi.org/10.1016/j.scitotenv.2014.09.109 Zhu K., Blum P., Ferguson G., Balke K.-D., Bayer P. (2010) The geothermal potential of urban heat islands. Environ. Res. Lett., 5, 044002. https://doi.org/10.1088/1748-9326/5/4/044002
Дополнительные файлы

