Струйная 3D-печать керамического интерконнектора на основе Zr0.9Y0.1O1.95 для микротрубчатых твердооксидных топливных элементов

Обложка

Цитировать

Полный текст

Аннотация

Представлен новый дизайн интерконнектора для трубчатых твердооксидных топливных элементов, в котором функции электрического соединения и механического/газового распределения разделены. Электрическое соединение элементов реализовано отдельной металлической проволокой, прокладываемой по окружности каркаса. Разработан состав пасты и параметры струйной 3D-печати, а также режим спекания, позволившие получить плотные образцы с высокой микротвердостью. Данный подход позволяет использовать химически и термически совместимый с электролитом материал Zr0.9Y0.1O1.95, исключая проблемы проводимости и коррозии, присущие традиционным интерконнекторам.

Об авторах

Анна Дмитриевна Фроленкова

Институт химии твёрдого тела и механохимии СО РАН

ORCID iD: 0009-0005-5233-0006
630128, г. Новосибирск, ул. Кутателадзе, 18

Александр Игоревич Титков

Институт химии твёрдого тела и механохимии СО РАН

ORCID iD: 0000-0003-0835-9985
630128, г. Новосибирск, ул. Кутателадзе, 18

Екатерина Александровна Перова

Институт химии твёрдого тела и механохимии СО РАН; Новосибирский государственный университет

ORCID iD: 0009-0005-9061-6363
630128, г. Новосибирск, ул. Кутателадзе, 18

Иван Владимирович Толстобров

Вятский государственный университет

ORCID iD: 0000-0002-0133-6150
г. Киров ул. Московская, д. 36

Список литературы

  1. Masciandaro S., Torrell M., Leone P., Tarancón A. Three-dimensional printed yttria-stabilized zirconia self-supported electrolytes for solid oxide fuel cell applications. Journal of the European Ceramic Society, 2019, vol. 39, no. 1, pp. 9–16. https://doi.org/10.48550/arXiv.1712.04036
  2. Sobyanin V. A. High-Temperature Solid Oxide Fuel Cells and Methane Conversion. Russian Journal of Chemistry, 2003, no. 6, pp. 74–83 (in Russian).
  3. Konysheva E. Yu. Perovskite-like Materials Based on Transition and Rare Earth Metals: Patterns of Chemical and Thermal Stability. Diss. Dr. Sci. (Chem.). Saint Petersburg, 2018. 305 p. (in Russian).
  4. Kawale S. S., Kelsall G. H. Inkjet 3D-printing of functional layers of solid oxide electrochemical reactors: A review. Reaction Chemistry & Engineering. 2022, vol. 7, no. 1, pp. 10–28. https://doi.org/10.1039/D1RE00454A
  5. Farandos N. M., Kleiminger L., Li T., Hankin A., Kelsall G. H. Three-dimensional Inkjet Printed Solid Oxide Electrochemical Reactors. I. Yttriastabilized Zirconia Electrolyte. Electrochimica Acta, 2016, vol. 213, pp. 831–839. https://doi.org/10.1016/j.electacta.2016.07.103
  6. Rodionova S. D., Demeneva N. V., Orlov V. I., Kogtenkova O. A., Bredikhin S. I. Mechanical characteristics of new Russian ferritic stainless steels Х24 considered for SOFC and SOEC applications. In: Bredikhin S. I., sci. ed. The Eleventh All-Russian Conference “Fuel Cells and Power Plants Based on Them” (June 24–27, 2024). Chernogolovka, ISSP RAS Publ., 2024, pp. 110–111 (in Russian). https://doi.org/10.24412/cl-37211-FC-2024.38
  7. Asmedianova A., Malbakhova I., Logutenko O., Vorobyev A., Borisenko T., Bagishev A., Titkov A. A novel approach to tailoring the microstructure and electrophysical properties of Ni/GDC-based anodes by combining 3D-inkjet printing and layer-bylayer laser treatment. Ceramics International, 2024, vol. 50, no. 11, pp. 19487–19496. https://doi.org/10.1016/j.ceramint.2024.01.264

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).