Hydrolytic and oxidative stability of sulfide solid electrolytes
- Autores: Pilyugina Y.A.1, Kuzmina E.V.1, Kolosnitsyn V.S.2
-
Afiliações:
- Ufa Institute of Chemistry of the Russian Academy of Sciences
- Institute of Organic Chemistry of the Ufa RAS Scientific Center
- Edição: Volume 25, Nº 2 (2025)
- Páginas: 68-73
- Seção: Articles
- URL: https://ogarev-online.ru/1608-4039/article/view/381278
- DOI: https://doi.org/10.18500/1608-4039-2025-25-2-68-73
- EDN: https://elibrary.ru/IZJQDR
- ID: 381278
Citar
Texto integral
Resumo
Sobre autores
Yulia Pilyugina
Ufa Institute of Chemistry of the Russian Academy of Sciences
ORCID ID: 0000-0001-8881-2545
Scopus Author ID: 57226310435
Researcher ID: GZG-3027-2022
69 Prospect Oktyabrya, Ufa 450054, Russia
Elena Kuzmina
Ufa Institute of Chemistry of the Russian Academy of Sciences
ORCID ID: 0000-0002-3758-4762
Scopus Author ID: 6701413998
Researcher ID: A-9687-2011
69 Prospect Oktyabrya, Ufa 450054, Russia
Vladimir Kolosnitsyn
Institute of Organic Chemistry of the Ufa RAS Scientific Center
ORCID ID: 0000-0003-1318-6943
71, Oktyabrya Ave, Ufa, 450054
Bibliografia
- Huang H., Liu C., Liu Z., Wu Y., Liu Y., Fan J., Zhang G., Xiong P., Zhu J. Functional inorganic additives in composite solid-state electrolytes for flexible lithium metal batteries. Adv. Powder Mater., 2024. vol. 3, no. 1, art. 100141. https://doi.org/10.1016/j.apmate.2023.100141
- Frenck L., Sethi G. K., Maslyn J. A., Balsara N. P. Factors That Control the Formation of Dendrites and Other Morphologies on Lithium Metal Anodes. Front. Energy Res., 2019, vol. 7, art. 115. https://doi.org/10.3389/fenrg.2019.00115
- Yang H., Wu N. Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: A review. Energy Sci. Eng., 2022, vol. 10, iss. 5, pp. 1643–1671. https://doi.org/10.1002/ese3.1163
- Yersak T. A., Zhang Y., Hao F., Cai M. Moisture Stability of Sulfide Solid-State Electrolytes. Front. Energy Res., 2022, vol. 10, art. 882508. https://doi.org/10.3389/fenrg.2022.882508
- Li P., Ma Z., Shi J., Han K., Wan Q., Liu Y., Qu X. Recent Advances and Perspectives of Air Stable Sulfide-Based Solid Electrolytes for All-Solid-State Lithium Batteries. Chem. Rec., 2022, vol. 22, iss. 10, art. e202200086. https://doi.org/10.1002/tcr.202200086
- Muramatsu H., Hayashi A., Ohtomo T., Hama S., Tatsumisago M. Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics, 2011, vol. 182, iss. 1, pp. 116–119. https://doi.org/10.1016/j.ssi.2010.10.013
- Kanazawa K., Yubuchi S., Hotehama C., Otoyama M., Shimono S., Ishibashi H., Kubota Y., Sakuda A., Hayashi A., Tatsumisago M. Mechanochemical Synthesis and Characterization of Metastable Hexagonal Li4SnS4 Solid Electrolyte. Inorg. Chem., 2018, vol. 57, iss. 16, pp. 9925–9930. https://doi.org/10.1021/acs.inorgchem.8b01049
- Pilyugina Yu. A., Mishinkin V. Y., Kuzmina E. V., Li B. Q., Zhang Q., Kolosnitsyn V. S. The sulfide solid electrolyte synthesized via carbothermal reduction of lithium sulfate for solid-state lithium-sulfur batteries. Inorg. Chem. Commun., 2025, vol. 174, art. 113926. https://doi.org/10.1016/j.inoche.2025.113926
- Altomare A., Corriero N., Cuocci C., Falcicchio A., Moliternia A., Rizzia R. QUALX2.0: A qualitative phase analysis software using the freely available database POW-COD. J. Appl. Crystallogr., 2015, vol. 48, iss. 2, pp. 598–603. https://doi.org/10.1107/S1600576715002319
- Phuc N. H. H., Morikawa K., Mitsuhiro T., Muto H., Matsuda A. Synthesis of plate-like Li3PS4 solid electrolyte via liquid-phase shaking for allsolid-state lithium batteries. Ionics, 2017, vol. 23, iss. 8, pp. 2061–2067. https://doi.org/10.1007/s11581-017-2035-8
Arquivos suplementares

