Automorphisms of cubic surfaces in positive characteristic
- Авторы: Долгачев И.В.1, Duncan A.2
-
Учреждения:
- University of Michigan, Department of Mathematics
- Университет штата Южная Каролина
- Выпуск: Том 83, № 3 (2019)
- Страницы: 15-92
- Раздел: Статьи
- URL: https://ogarev-online.ru/1607-0046/article/view/133772
- DOI: https://doi.org/10.4213/im8803
- ID: 133772
Цитировать
Аннотация
Ключевые слова
Об авторах
Игорь Владимирович Долгачев
University of Michigan, Department of Mathematics
Email: idolga@umich.edu
PhD
Alexander Duncan
Университет штата Южная Каролина
Email: duncan@math.sc.edu
PhD
Список литературы
- I. V. Dolgachev, V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, arithmetic, and geometry, In honor of Yu. I. Manin, v. I, Progr. Math., 269, Birkhäuser Boston, Inc., Boston, MA, 2009, 443–548
- S. Kantor, Theorie der endlichen Gruppen von eindeutigen Transformationen in der Ebene, Mayer & Müller, Berlin, 1895, 111 pp.
- A. Wiman, “Zur Theorie der endlichen Gruppen von birationalen Transformationen in der Ebene”, Math. Ann., 48:1-2 (1896), 195–240
- B. Segre, The non-singular cubic surfaces, Oxford Univ. Press, Oxford, 1942, xi+180 pp.
- T. Hosoh, “Automorphism groups of cubic surfaces”, J. Algebra, 192:2 (1997), 651–677
- I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, Cambridge, 2012, xii+639 pp.
- R. W. Carter, “Conjugacy classes in the Weyl group”, Compositio Math., 25 (1972), 1–59
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups, Oxford Univ. Press, Eynsham, 1985, xxxiv+252 pp., With comput. assistance from J. G. Thackray
- J.-P. Serre, “Le groupe de Cremona et ses sous-groupes finis”, Seminaire Bourbaki, Exposes 997–1011, v. 2008/2009, Asterisque, 332, Soc. Math. France, Paris, 2010, vii, 75–100, Exp. No. 1000
- I. Dolgachev, A. Duncan, “Regular pairs of quadratic forms on odd-dimensional spaces in characteristic $2$”, Algebra Number Theory, 12:1 (2018), 99–130
- A. Emch, “On a new normal form of the general cubic surface”, Amer. J. Math., 53:4 (1931), 902–910
- Ф. Клейн, Лекции об икосаэдре и решении уравнений пятой степени, Наука, М., 1989, 336 с.
- D. J. Winter, “Representations of locally finite groups”, Bull. Amer. Math. Soc., 74 (1968), 145–148
- M. Suzuki, Group theory. I, Transl. from the Japan., Grundlehren Math. Wiss., 247, Springer-Verlag, Berlin–New York, 1982, xiv+434 pp.
- Ю. И. Манин, Кубические формы, Наука, М., 1972, 304 с.
- G. Neuman, “Rational surfaces with too many vector fields”, Proc. Amer. Math. Soc., 76:2 (1979), 189–195
- E. Dardanelli, B. van Geemen, “Hessians and the moduli space of cubic surfaces”, Algebraic geometry, Contemp. Math., 422, Amer. Math. Soc., Providence, RI, 2007, 17–36
- A. Beauville, “Sur les hypersurfaces dont les sections hyperplanes sont à module constant”, The Grothendieck Festschrift, With an appendix by D. Eisenbud, C. Huneke, v. 1, Progr. Math., 86, Birkhäuser Boston, Boston, MA, 1990, 121–133
- W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, 2nd ed., Springer-Verlag, Berlin, 1998, xiv+470 pp.
- M. Demazure, “Resultant, discriminant”, Enseign. Math. (2), 58:3-4 (2012), 333–373
- Z. Chen, “A prehomogeneous vector space of characteristic $3$”, Group theory (Beijing, 1984), Lecture Notes in Math., 1185, Springer, Berlin, 1986, 266–276
- A. M. Cohen, D. B. Wales, “$operatorname{GL}(4)$-orbits in a $16$-dimensional module for characteristic $3$”, J. Algebra, 185:1 (1996), 85–107
- T. Shioda, “Arithmetic and geometry of Fermat curves”, Algebraic geometry seminar (Singapore, 1987), World Sci. Publ., Singapore, 1988, 95–102
- J. W. P. Hirschfeld, Finite projective spaces of three dimensions, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1985, x+316 pp.
- A. Emch, “Properties of the cubic surface derived from a new normal form”, Amer. J. Math., 61:1 (1939), 115–122
- A. L. Dixon, V. C. Morton, “Planes, points, and surfaces associated with a cubic surface”, Proc. London Math. Soc. (2), 37 (1934), 221–240
- S. Saito, “General fixed point formula for an algebraic surface and the theory of Swan representations for two-dimensional local rings”, Amer. J. Math., 109:6 (1987), 1009–1042
- H. E. A. E. Campbell, D. L. Wehlau, Modular invariant theory, Encyclopaedia Math. Sci., 139, Invariant Theory Algebr. Transform. Groups, 8, Springer-Verlag, Berlin, 2011, xiv+233 pp.
- J.-P. Serre, Local fields, Transl. from the French, Grad. Texts in Math., 67, Springer-Verlag, New York–Berlin, 1979, viii+241 pp.
Дополнительные файлы
