On adjacency operators of locally finite graphs
- Авторлар: Trofimov V.I.1,2,3
-
Мекемелер:
- N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
- Ural Federal University named after the First President of Russia B. N. Yeltsin
- Ural Mathematical Center
- Шығарылым: Том 88, № 3 (2024)
- Беттер: 139-191
- Бөлім: Articles
- URL: https://ogarev-online.ru/1607-0046/article/view/257719
- DOI: https://doi.org/10.4213/im9408
- ID: 257719
Дәйексөз келтіру
Аннотация
A graph $\Gamma$ is called locally finite if,for each vertex $v\in \Gamma$, the set $\Gamma(v)$ of its adjacent vertices is finite.For an arbitrary locally finite graph $\Gamma$ withvertex set $V(\Gamma)$ and an arbitrary field $F$,let $F^{V(\Gamma)}$ be the vector space over $F$of all functions $V(\Gamma) \to F$ (with naturalcomponentwise operations) and let $A^{(\mathrm{alg})}_{\Gamma,F}$be the linear operator $F^{V(\Gamma)} \to F^{V(\Gamma)}$defined by$(A^{(\mathrm{alg})}_{\Gamma,F}(f))(v) = \sum_{u \in \Gamma(v)}f(u)$for all $f \in F^{V(\Gamma)}$, $v \in V(\Gamma)$.In the case of a finite graph $\Gamma$, themapping $A^{({\mathrm{alg}})}_{\Gamma,F}$ is the well-known operator defined by theadjacency matrix of the graph $\Gamma$ (over $F$), andthe theory of eigenvalues and eigenfunctions of such operatorsis a well developed part of the theory of finite graphs(at least, in the case $F = \mathbb{C}$). In the present paper, wedevelop the theory of eigenvalues and eigenfunctions of the operators$A^{({\mathrm{alg}})}_{\Gamma,F}$for infinite locally finite graphs $\Gamma$ (however, some results that followmay present certain interest for the theory of finite graphs) and arbitrary fields $F$,even though in the present paper special emphasis is placedon the case of a connected graph $\Gamma$ with uniformly bounded degrees of vertices and $F = \mathbb{C}$.The previous attempts in this direction were not, in the author's opinion,quite satisfactory in the sense that they have been concerned only with eigenfunctions (and corresponding eigenvalues)of rather special type.
Негізгі сөздер
Авторлар туралы
Vladimir Trofimov
N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin; Ural Mathematical Center
Хат алмасуға жауапты Автор.
Email: trofimov@imm.uran.ru
Doctor of physico-mathematical sciences, Head Scientist Researcher
Әдебиет тізімі
- С. Ленг, Алгебра, Мир, М., 1968, 564 с.
- Д. Цветкович, М. Дуб, Х. Захс, Спектры графов. Теория и применение, Наук. думка, Киев, 1984, 384 с.
- A. E. Brouwer, W. H. Haemers, Spectra of graphs, Universitext, Springer, New York, 2012, xiv+250 pp.
- B. Mohar, “The spectrum of an infinite graph”, Linear Algebra Appl., 48 (1982), 245–256
- B. Mohar, W. Woess, “A survey on spectra of infinite graphs”, Bull. London Math. Soc., 21:3 (1989), 209–234
- O. Toeplitz, “Über die Auflösung unendlichvieler linearer Gleichungen mit unendlichvielen Unbekannten”, Rend. Circ. Mat. Palermo, 28 (1909), 88–96
- A. Abian, “Solvability of infinite systems of linear equations”, Arch. Math. (Brno), 12:1 (1976), 43–44
- Ю. И. Любич, “Линейный функциональный анализ”, Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления, 19, ВИНИТИ, М., 1988, 5–305
- Shi Qiang Wang, “The inverses of infinite matrices over a field”, (на кит. яз.), Beijing Shifan Daxue Xuebao [J. Beijing Normal Univ. (Nat. Sci.)], 29:3 (1993), 327–330
- V. I. Trofimov, “The existence of nonconstant harmonic functions on infinite vertex-symmetric graphs”, European J. Combin., 19:4 (1998), 519–523
- Коуровская тетрадь. Нерешенные вопросы теории групп, 15-е изд., доп., ред. В. Д. Мазуров, Е. И. Хухро, Ин-т матем. СО РАН, Новосибирск, 2002, 172 с.
- C. D. Godsil, Algebraic combinatorics, Chapman and Hall Math. Ser., Chapman & Hall, New York, 1993, xvi+362 pp.
- W. Woess, Random walks on infinite graphs and groups, Cambridge Tracts in Math., 138, Cambridge Univ. Press, Cambridge, 2000, xii+334 pp.
- Н. Бурбаки, Алгебра. Многочлены и поля. Упорядоченные группы, Элементы математики, Наука, М., 1965, 300 с.
- L. Bartholdi, “Counting paths in graphs”, Enseign. Math. (2), 45:1-2 (1999), 83–131
- A. E. Taylor, Introduction to functional analysis, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958, xvi+423 pp.
- У. Браттели, Д. Робинсон, Операторные алгебры и квантовая статистическая механика, Мир, М., 1982, 512 с.
- M. H. Stone, Linear transformations in Hilbert space and their applications to analysis, Amer. Math. Soc. Colloq. Publ., 15, Amer. Math. Soc., New York, 1932, viii+622 pp.
Қосымша файлдар
