Increasing the Sensitivity of Interferometric Measurements Using Squeezed Light
- 作者: Andrianov A.V.1
-
隶属关系:
- A.V. Gaponov-Grekhov Institute of Applied Physics, RAS
- 期: 卷 125, 编号 1 (2025): THEMED SECTION: FUNDAMENTAL PROBLEMS OF GRAVITATIONAL- WAVE ASTRONOMY AND GRAVIMETRY
- 页面: 36-43
- 栏目: THEMED SECTION: FUNDAMENTAL SCIENTIFIC RESEARCH IN THE FIELD OF NATURAL SCIENCES
- URL: https://ogarev-online.ru/1605-8070/article/view/303912
- DOI: https://doi.org/10.22204/2410-4639-2025-125-01-36
- ID: 303912
如何引用文章
全文:
详细
In this work, we investigate the possibility of using quantum squeezed light generated during propagation of ultrashort optical pulses in a medium with third-order (Kerr) nonlinearity to increase the sensitivity of interferometric measurements. In a demonstration experiment, using squeezed light states obtained in optical fibers with third-order nonlinearity, we experimentally demonstrated an increase in the interferometer sensitivity by 4 dB beyond the shot noise level, whereas in previous demonstrations, squeezed vacuum states generated in media with quadratic nonlinearity were used to increase the sensitivity. For this purpose, we used an original system based on nonlinear polarization-maintaining fibers to obtain squeezing of the quantum uncertainty of the polarization state of femtosecond pulses better than –5 dB, which has high long-term stability without active stabilization systems.
作者简介
Alexey Andrianov
A.V. Gaponov-Grekhov Institute of Applied Physics, RAS
编辑信件的主要联系方式.
Email: andrian@ipfran.ru
俄罗斯联邦, 46, Ulyanov Str., Nizhny Novgorod, 603950, Russia
参考
- M.E. Gertsenshtein, V.I. Pustovoit Sov. Phys. JETP, 1963, 16, 433.
- R. Loudon Phys. Rev. Lett., 1981, 47, 815. doi: 10.1103/PhysRevLett.47.815.
- C.M. Caves Phys. Rev. D, 1981, 23, 1693. doi: 10.1103/PhysRevD.23.1693.
- S. Daryanoosh, S. Slussarenko, D.W. Berry, H.M. Wiseman, G.J. Pryde Nat. Commun., 2018, 9(1), 4606. doi: 10.1038/s41467-018-06601-7.
- F. Acernese, M. Agathos, L. Aiello et al. Phys. Rev. Lett., 2019, 123. doi: 10.1103/PhysRevLett.123.231108.
- H.J. Kimble, Y. Levin, A.B. Matsko, K.S. Thorne, S.P. Vyatchanin Phys. Rev. D, 2021, 65, 022002. doi: 10.1103/PhysRevD.65.022002.
- L. McCuller, C. Whittle, D. Ganapathyet et al. Phys. Rev. Lett., 2020, 124, 171102. DOI: /10.1103/PhysRevLett.124.171102.
- H. Miao, H. Yang, R.X. Adhikari, Y. Chen Clas. Quant. Grav., 2014, 31, 165010. doi: 10.1088/0264-9381/31/16/165010.
- R. Schnabel Phys. Rep., 2017, 684, 1, 2017. doi: 10.1016/j.physrep.2017.04.001.
- N. Kalinin, T. Dirmeier, A.A. Sorokin, E.A. Anashkina, L.L. Sánchez‐Soto, J.F. Corney, G. Leuchs, A.V. Andrianov Adv. Quantum Technol., 2023, 6(3), 2200143. doi: 10.1002/qute.202200143.
- W.H. Zurek Nature, 2001, 412(6848), 712. doi: 10.1038/35089017.
- M. Xiao, L.-A. Wu, H.J. Kimble Phys. Rev. Lett., 1987, 59, 278. DOI: /10.1103/PhysRevLett.59.278.
- P. Grangier, R.E. Slusher, B. Yurke, A. LaPorta Phys. Rev. Lett., 1987, 59, 2153. DOI: /10.1103/PhysRevLett.59.2153.
- N. Kalinin, T. Dirmeier, A.A. Sorokin, E.A. Anashkina, L.L. Sánchez-Soto, J.F. Corney, G. Leuchs, A.V. Andrianov Nanophotonics, 2023, 12(14), 2945. doi: 10.1515/nanoph-2023-0032.
补充文件
