Single Photon Detectors Made of Micron Wide Superconducting Strips for Quantum Optics and Photonics
- Autores: Korneeva Y.P.1, Dryazgov M.A.2, Vodolazov D.Y.3, Korneev A.A.2
-
Afiliações:
- Institute of Nanotechnology of Microelectronics, RAS
- National Research University Higher School of Economics
- Institute for Physics of Microstructures, RAS
- Edição: Volume 117, Nº 1 (2023): ТЕМАТИЧЕСКИЙ БЛОК: СОВРЕМЕННЫЕ ПРОБЛЕМЫ ФОТОНИКИ ИНФРАКРАСНОГО ДИАПАЗОНА
- Páginas: 57-72
- Seção: THEMED SECTION: FUNDAMENTAL SCIENTIFIC RESEARCH IN THE FIELD OF NATURAL SCIENCES
- URL: https://ogarev-online.ru/1605-8070/article/view/299514
- DOI: https://doi.org/10.22204/2410-4639-2023-117-01-57-72
- ID: 299514
Citar
Texto integral
Resumo
Practical requirements of state-of-the-art quantum optics and photonics stimulate further improvement of superconducting single-photon detectors in the direction of increased area and detector arrays. Superconducting micron-wide strips capable to detect single photons are the way to develop large-area detector suitable for efficient
coupling to free space and multi-mode fibres. Such a detector should combine high detection efficiency, detection rate and low dark counts.
In this work we present the results of the experimental research into single-photon detection mechanism of visible and infrared light in thin superconducting polycrystalline NbN and amorphous MoSi micron-wide strips, in which
critical current close to Ginzburg – Landau depairing current can be reached. The results are used for the research and development of large-area detector for quantum optics, photonics, and quantum computing with photons.
Palavras-chave
Sobre autores
Yuliya Korneeva
Institute of Nanotechnology of Microelectronics, RAS
Autor responsável pela correspondência
Email: korneeva_yuliya@mail.ru
Rússia, lockbox 50, Moscow, 115487, Russia
Mikhail Dryazgov
National Research University Higher School of Economics
Email: mdryazgov@hse.ru
Rússia, 11 Pokrovsky Blvrd., Moscow, 109028, Russia
Denis Vodolazov
Institute for Physics of Microstructures, RAS
Email: dvod2011@mail.ru
Professor
Rússia, 7 Academicheskaya Str., Nizhny Novgorod, 603950, RussiaAlexander Korneev
National Research University Higher School of Economics
Email: aakorneev@hse.ru
Professor
Rússia, 11 Pokrovsky Blvrd., Moscow, 109028, RussiaBibliografia
- G.N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov. Appl. Phys. Lett., 2001, 79(6), 705. doi: 10.1063/1.1388868.
- A.D. Semenov. Supercond. Sci. Technol., 2021, 34(5), 054002. doi: 10.1088/1361-6668/abef7d.
- A.D. Semenov, G.N. Gol’tsman, A.A. Korneev. Physica C: Superconductivity, 2001, 351(4), 349. doi: 10.1016/S0921-4534(00)01637-3.
- A. Semenov, A. Engel, H.W. Hubers, K. Il’in, M. Siegel. Eur. Phys. J. B, 2005, 47, 495. doi: 10.1140/epjb/e2005-00351-8.
- L.N. Bulaevskii, M.J. Graf, C.D. Batista, V.G. Kogan. Phys. Rev. B, 2011, 83(14), 1. doi: 10.1103/PhysRevB.83.144526.
- L.N. Bulaevskii, M.J. Graf, V.G. Kogan. Phys. Rev. B, 2012, 85(1), 014505. doi: 10.1103/PhysRevB.85.014505.
- I.E. Zadeh, J. Chang, J.W.N. Los, S. Gyger, A.W. Elshaari, S. Steinhauer, S.N. Dorenbos, V. Zwiller. Appl. Phys. Lett., 2021, 118(19), 190502. doi: 10.1063/5.0045990.
- A.N. Zotova, D.Y. Vodolazov. Phys. Rev. B, 2012, 85(2), 024509. doi: 10.1103/PhysRevB.85.024509.
- A.N. Zotova, D.Y. Vodolazov. Supercond. Sci. Technol., 2014, 27(12), 125001. doi: 10.1088/0953-2048/27/12/125001.
- D.Yu. Vodolazov. Phys. Rev. Applied, 2017, 7(3), 034014. doi: 10.1103/PhysRevApplied.7.034014.
- Yu.P. Korneeva, D.Yu. Vodolazov, A.V. Semenov, I.N. Florya, N. Simonov, E. Baeva, A.A. Korneev, G.N. Goltsman, T.M. Klapwijk. Phys. Rev. Applied, 2018, 9(6), 064037. doi: 10.1103/PhysRevApplied.9.064037.
- Yu. Korneeva, D. Vodolazov, I. Florya, N. Manova, Eu. Smirnov, A. Korneev, M. Mikhailov, G. Goltsman, T.M. Klapwijk. EPJ Web of Conferences, 2018, 190, 04010. doi: 10.1051/epjconf/201819004010.
- J. Chiles, S.M. Buckley, A. Lita, V.B. Verma, J. Allmaras, B. Korzh, M.D. Shaw, J.M. Shainline, R.P. Mirin, S.W. Nam. Appl. Phys. Lett., 2020, 116(24), 242602. doi: 10.1063/5.0006221.
- I. Charaev, Y. Morimoto, A. Dane, A. Agarwal, M. Colangelo, K.K. Berggren. Appl. Phys. Lett., 2020, 116(24), 242603. doi: 10.1063/5.0005439.
- G. Xu, W. Zhang, L. You, J. Xiong, X. Sun, H. Huang, X. Ou, Y. Pan, Ch. Lv, H. Li, Zh. Wang, X. Xie. Photon. Res., 2021, 9(6), 958. doi: 10.1364/PRJ.419514.
- J.L. O’Brien, A. Furusawa, J. Vuckovic. Nat. Photonics, 2009, 3(12), 687. doi: 10.1038/nphoton.2009.229.
- H.S. Zhong, H. Wang, Y.H. Deng, M.C. Chen, L.C. Peng, Y.H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.Y. Yang, W.J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, H. Wang, L. Li, N.L. Liu, C.Y. Lu, J.W. Pan. Science, 2020, 370(6523), 1460. doi: 10.1126/science.abe8770.
- R. Cheng, C.L. Zou, X. Guo, S. Wang, X. Han, H.X. Tang. Nat. Commun., 2019, 10(1), 4104. doi: 10.1038/s41467-019-12149-x.
- M. Yabuno, Sh. Miyajima, Sh. Miki, H. Terai. Optics Express, 2020, 28(8), 12047. doi: 10.1364/OE.38830.
- F. Beutel, H. Gehring, M.A. Wolff, C. Schuck, W. Pernice. NPJ Quantum Inf., 2021, 7(1), 40. doi: 10.1038/s41534-021-00373-7.
- J. Chiles, I. Charaev, R. Lasenby, M. Baryakhtar, J. Huang, A. Roshko, G. Burton, M. Colangelo, K.V. Tilburg, A. Arvanitaki, S.W. Nam, K.K. Berggren. Phys. Rev. Lett., 2022, 128(23), 231802. doi: 10.1103/PhysRevLett.128.231802.
- M. Häußler, R. Terhaar, M.A. Wolff, H. Gehring, F. Beutel, W. Hartmann, N. Walter, M. Tillmann, M. Ahangarianabhari, M. Wahl, T. Röhlicke, H. Rahn, W. Pernice, C. Schuck. Review of Scientific Instruments, 2023, 94(1), 013103. doi: 10.1063/5.0114903.
- J.R. Clem, V.G. Kogan. Phys. Rev. B, 2012, 86(17), 174521. doi: 10.1103/PhysRevB.86.174521.
- Yu.P. Korneeva, N.N. Manova, M.A. Dryazgov, N.O. Simonov, Ph.I. Zolotov, A.A. Korneev. Supercond. Sci. Technol., 2021, 34(8), 084001. doi: 10.1088/1361-6668/ac0950.
- Yu.P. Korneeva, M.Yu. Mikhailov, Yu.P. Pershin, N.N. Manova, A.V. Divochiy, Yu.B. Vakhtomin, A.A. Korneev, K.V. Smirnov, A.G. Sivakov, A.Yu. Devizenko. Supercond. Sci. Technol., 2014, 27(9), 095012. doi: 10.1088/0953-2048/27/9/095012.
- J.K.W. Yang, A.J. Kerman, E.A. Dauler, V. Anant, K.M. Rosfjord, K.K. Berggren. IEEE Trans. Appl. Supercond., 2007, 17(2), 581. doi: 10.1109/TASC.2007.898660.
- M. Dryazgov, A. Semenov, N. Manova, Y. Korneeva, A. Korneev. J. Phys. Conf. Ser., 2020, 1695(1), 012195. doi: 10.1088/1742-6596/1695/1/012195.
- N.N. Manova, N.O. Simonov, Yu.P. Korneeva, A.A. Korneev. J. Phys.: Conf. Ser., 2020, 1695(1), 012116. doi: 10.1088/1742-6596/1695/1/012116.
- K. Smirnov, A. Divochiy, Yu. Vakhtomin, P. Morozov, Ph. Zolotov, A. Antipov, V. Seleznev. Supercond. Sci. Technol., 2018, 31(3), 035011. doi: 10.1088/1361-6668/aaa7aa.
- Ph.I. Zolotov, A.V. Semenov, A.V. Divochiy, G.N. Goltsman, N.R. Romanov, T.M. Klapwijk. IEEE Trans. Appl. Supercond., 2021, 31(5), 1. doi: 10.1109/TASC.2021.3061923.
- D.Yu. Vodolazov, Yu.P. Korneeva, A.V. Semenov, A.A. Korneev, G.N. Goltsman. Phys. Rev. B, 2015, 92(10), 104503. doi: 10.1103/PhysRevB.92.104503.
- Yu.P. Korneeva, N.N. Manova, I.N. Florya, M.Yu. Mikhailov, O.V. Dobrovolskiy, A.A. Korneev, D.Yu. Vodolazov. Phys. Rev. Applied, 2020, 13(2), 024011. doi: 10.1103/PhysRevApplied.13.024011.
- J.R. Clem, K.K. Berggren. Phys. Rev., 2011, 84(17), 174510. doi: 10.1103/PhysRevB.84.174510.
- D. Henrich, P. Reichensperger, M. Hofherr, J.M. Meckbach, K. Il’in, M. Siegel, A. Semenov, A. Zotova, D.Yu. Vodolazov. Phys. Rev. B, 2012, 86(14), 144504. doi: 10.1103/PhysRevB.86.144504.
- M. Shcherbatenko, M. Elezov, N. Manova, K. Sedykh, A. Korneev, Yu. Korneeva, M. Dryazgov, N. Simonov, A. Feimov, G. Goltsman, D. Sych. Appl. Phys. Lett., 2021, 118(18), 181103. doi: 10.1063/5.0046049.
Arquivos suplementares
