Clinical and laboratory predictors of poor outcome in COVID-19 patients

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Many researchers have reported numerous predictors of severe COVID-19 and poor prognosis. However, to make a quick decision, the doctor needs to have a certain set of data that he can use in routine practice to predict the outcome in patients with this disease.

AIMS: This study aimed to develop and describe a predictive model for determining an unfavorable outcome in COVID-19 patients based on age, objective, laboratory and instrumental data, and comorbid pathology.

MATERIALS AND METHODS: The study included 447 patients with a laboratory-confirmed diagnosis of COVID-19 who underwent inpatient treatment in the period from March 2020 to January 2021. Discriminant analysis was used with cross-validation to build a predictive model.

RESULTS: Based on discriminant analysis, a predictive model was developed to predict the outcome in patients with COVID-19. Evaluation of clinical findings, such as respiratory rate, heart rate, SpO2, laboratory data, and computed tomography results on admission to the hospital, showed their significance as predictors of poor outcome. The discrimination constant was 0.4435. The sensitivity of the model is 96.4%, and the specificity is 90.4%.

CONCLUSION: The developed model will help medical institutions predict the outcome of the disease when a patient is admitted to the hospital and, on this basis, optimize and prioritize the provision of necessary medical care.

About the authors

Irina A. Lizinfeld

Central Research Institute of Epidemiology

Email: irinalizinfeld@gmail.com
ORCID iD: 0000-0002-8114-1002
SPIN-code: 2046-1407

MD

Russian Federation, 3A, Novogireyevskaya street, Moscow, 111123

Natalia Yu. Pshenichnaya

Central Research Institute of Epidemiology

Email: natalia-pshenichnaya@yandex.ru
ORCID iD: 0000-0003-2570-711X
SPIN-code: 5633-7265

MD, Dr. Sci. (Med.), Professor

Russian Federation, 3A, Novogireyevskaya street, Moscow, 111123

Olga V. Bunyaeva

Domodedovo Central City Hospital

Email: olya-bunyaeva@mail.ru
ORCID iD: 0000-0002-4889-5566

MD

Russian Federation, Domodedovo

Irina M. Shilkina

Domodedovo Central City Hospital

Email: shim-48@mail.ru
ORCID iD: 0000-0002-9900-038X

MD

Russian Federation, Domodedovo

Olga A. Shmailenko

City Hospital № 1 N.A. Semashko, City Hospital No. 1 named after N.A. Semashko of Rostov-on-Don

Email: Shmailenko@mail.ru
ORCID iD: 0000-0002-4680-590X

MD

Russian Federation, Rostov-on-Don

Galina V. Gopatsa

Central Research Institute of Epidemiology

Email: GopatsaG@mail.ru
ORCID iD: 0000-0001-8703-7671

MD, Cand. Sci. (Med.)

Russian Federation, 3A, Novogireyevskaya street, Moscow, 111123

Dmitrii V. Siziakin

City Hospital № 1 N.A. Semashko, City Hospital No. 1 named after N.A. Semashko of Rostov-on-Don; Rostov State Medical University

Email: Siziakin@gmail.com
ORCID iD: 0000-0001-7125-1374
SPIN-code: 8681-3345

MD, Dr. Sci. (Med.), Professor

Russian Federation, Rostov-on-Don; Rostov-on-Don

Evgeniia V. Chigaeva

City Hospital № 1 N.A. Semashko, City Hospital No. 1 named after N.A. Semashko of Rostov-on-Don; Rostov State Medical University

Author for correspondence.
Email: ChigaevaEV@gmail.com

MD, Cand. Sci. (Med.)

Russian Federation, Rostov-on-Don; Rostov-on-Don

References

  1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5
  2. Wu Z, McGoogan JM. Characteristics of and important lessons from the Coronavirus Disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239–1242. doi: 10.1001/jama.2020.2648
  3. Shi C, Wang L, Ye J, et al. Predictors of mortality in patients with coronavirus disease 2019: a systematic review and meta-analysis. BMC Infect Dis. 2021;21(1):663. doi: 10.1186/s12879-021-06369-0
  4. Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcos of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA. 2020;323(16):1574–1581. doi: 10.1001/jama.2020.5394
  5. Sisó-Almirall A, Kostov B, Mas-Heredia M, et al. Prognostic factors in Spanish COVID-19 patients: a case series from Barcelona. PLoS One. 2020;15(8):e0237960. doi: 10.1371/journal.pone.0237960
  6. De Souza FS, Hojo-Souza NS, Batista BD, et al. On the analysis of mortality risk factors for hospitalized COVID-19 patients: a data-driven study using the major Brazilian database. PLoS One. 2021;16(3):e0248580. doi: 10.1371/journal.pone.0248580
  7. Lai CC, Wang CY, Wang YH, et al. Global epidemiology of coronavirus disease 2019 (COVID-19): disease incidence, daily cumulative index, mortality, and their association with country healthcare resources and economic status. Int J Antimicrob Agents. 2020;55(4):105946. doi: 10.1016/j.ijantimicag.2020.105946
  8. Glybochko PV, Fomin VV, Moiseev SV, et al. Risk factors for the early development of septic shock in patients with severe COVID-19. Ther Arch. 2020;92(11):17–23. (In Russ). doi: 10.26442/00403660.2020.11.000780
  9. Klypa TV, Bychinin MV, Mandel IA, et al. Clinical characteristics of patients admitted to an ICU with COVID-19. Predictors of the severe disease. Clin Pract. 2020;11(2):6–20. (In Russ). doi: 10.17816/clinpract34182
  10. Kiss S, Gede N, Hegyi P, et al. Early changes in laboratory parameters are predictors of mortality and ICU admission in patients with COVID-19: a systematic review and meta-analysis. Med Microbiol Immunol. 2021;210(1)33–47. doi: 10.1007/s00430-020-00696-w
  11. Chung M, Bernheim A, Mei X, et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology. 2020;295(1):202–207. doi: 10.1148/radiol.2020200230
  12. Durhan G, Düzgün AS, Demirkazık BF, et al. Visual and software-based quantitative chest CT assessment of COVID-19: correlation with clinical findings. Diagn Interv Radiol. 2020;26(6):557–564. doi: 10.5152/dir.2020.20407
  13. Burian E, Jungmann F, Kaissis GA, et al. Intensive care risk estimation in COVID-19 pneumonia based on clinical and imaging parameters: experiences from the munich cohort. J Clin Med. 2020; 9(5):1514. doi: 10.3390/jcm9051514
  14. Avdeev SN, Adamyan LV, Alekseeva EI, et al. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Temporary methodological recommendations. Version 9 from 26.10.2020. Moscow; 2020. 236 p. (In Russ).
  15. Liu J, Liu Y, Xiang P, et al. Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage. J Transl Med. 2020;18(1):206. doi: 10.1186/s12967-020-02374-0
  16. Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta. 2020;506:145–148. doi: 10.1016/j.cca.2020.03.022
  17. Yang M, Ng MH, Li CK. Thrombocytopenia in patients with severe acute respiratory syndrome (review). Hematology. 2005;10(2): 101–105. doi: 10.1080/10245330400026170
  18. Assaf D, Gutman Y, Neuman Y, et al. Utilization of machine-learning models to accurately predict the risk for critical COVID-19. Intern Emerg Med. 2020;15(8):1435–1443. doi: 10.1007/s11739-020-02475-0

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. Age analysis in COVID-19 patients вased on outcome.

Download (269KB)

Copyright (c) 2022 Lizinfeld I.A., Pshenichnaya N.Y., Bunyaeva O.V., Shilkina I.M., Shmailenko O.A., Gopatsa G.V., Siziakin D.V., Chigaeva E.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».