Sub-Finsler Geodesics on the Cartan Group
- 作者: Ardentov A.A.1, Le Donne E.2, Sachkov Y.L.1
- 
							隶属关系: 
							- Program Systems Institute of RAS
- Department of Mathematics and Statistics
 
- 期: 卷 24, 编号 1 (2019)
- 页面: 36-60
- 栏目: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/219246
- DOI: https://doi.org/10.1134/S1560354719010027
- ID: 219246
如何引用文章
详细
This paper is a continuation of the work by the same authors on the Cartan group equipped with the sub-Finsler ℓ∞ norm. We start by giving a detailed presentation of the structure of bang-bang extremal trajectories. Then we prove upper bounds on the number of switchings on bang-bang minimizers. We prove that any normal extremal is either bang-bang, or singular, or mixed. Consequently, we study mixed extremals. In particular, we prove that every two points can be connected by a piecewise smooth minimizer, and we give a uniform bound on the number of such pieces.
作者简介
Andrei Ardentov
Program Systems Institute of RAS
							编辑信件的主要联系方式.
							Email: aaa@pereslavl.ru
				                					                																			                												                	俄罗斯联邦, 							Pereslavl-Zalessky, Yaroslavl Region, 152020						
Enrico Le Donne
Department of Mathematics and Statistics
														Email: aaa@pereslavl.ru
				                					                																			                												                	芬兰, 							Jyväskylä, FI-40014						
Yuri Sachkov
Program Systems Institute of RAS
														Email: aaa@pereslavl.ru
				                					                																			                												                	俄罗斯联邦, 							Pereslavl-Zalessky, Yaroslavl Region, 152020						
补充文件
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  电邮这篇文章
			电邮这篇文章  开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					