Heteroclinic and Homoclinic Structures in the System of Four Identical Globally Coupled Phase Oscillators with Nonpairwise Interactions
- 作者: Grines E.A.1, Osipov G.V.1
- 
							隶属关系: 
							- Lobachevsky State University of Nizhni Novgorod
 
- 期: 卷 23, 编号 7-8 (2018)
- 页面: 974-982
- 栏目: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/219225
- DOI: https://doi.org/10.1134/S1560354718070110
- ID: 219225
如何引用文章
详细
Systems of N identical globally coupled phase oscillators can demonstrate a multitude of complex behaviors. Such systems can have chaotic dynamics for N > 4 when a coupling function is biharmonic. The case N = 4 does not possess chaotic attractors when the coupling is biharmonic, but has them when the coupling includes nonpairwise interactions of phases. Previous studies have shown that some of chaotic attractors in this system are organized by heteroclinic networks. In the present paper we discuss which heteroclinic cycles are forbidden and which are supported by this particular system. We also discuss some of the cases regarding homoclinic trajectories to saddle-foci equilibria.
作者简介
Evgeny Grines
Lobachevsky State University of Nizhni Novgorod
							编辑信件的主要联系方式.
							Email: evgenij.grines@gmail.com
				                					                																			                												                	俄罗斯联邦, 							ul. Gagarina 23, Nizhni Novgorod, 603950						
Grigory Osipov
Lobachevsky State University of Nizhni Novgorod
														Email: evgenij.grines@gmail.com
				                					                																			                												                	俄罗斯联邦, 							ul. Gagarina 23, Nizhni Novgorod, 603950						
补充文件
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  电邮这篇文章
			电邮这篇文章  开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					