Integrable Nonsmooth Nonholonomic Dynamics of a Rubber Wheel with Sharp Edges
- 作者: Kilin A.A.1, Pivovarova E.N.1
- 
							隶属关系: 
							- Steklov Mathematical Institute
 
- 期: 卷 23, 编号 7-8 (2018)
- 页面: 887-907
- 栏目: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/219201
- DOI: https://doi.org/10.1134/S1560354718070067
- ID: 219201
如何引用文章
详细
This paper is concerned with the dynamics of a wheel with sharp edges moving on a horizontal plane without slipping and rotation about the vertical (nonholonomic rubber model). The wheel is a body of revolution and has the form of a ball symmetrically truncated on both sides. This problem is described by a system of differential equations with a discontinuous right-hand side. It is shown that this system is integrable and reduces to quadratures. Partial solutions are found which correspond to fixed points of the reduced system. A bifurcation analysis and a classification of possible types of the wheel’s motion depending on the system parameters are presented.
作者简介
Alexander Kilin
Steklov Mathematical Institute
							编辑信件的主要联系方式.
							Email: aka@rcd.ru
				                					                																			                												                	俄罗斯联邦, 							ul. Gubkina 8, Moscow, 119991						
Elena Pivovarova
Steklov Mathematical Institute
														Email: aka@rcd.ru
				                					                																			                												                	俄罗斯联邦, 							ul. Gubkina 8, Moscow, 119991						
补充文件
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  电邮这篇文章
			电邮这篇文章  开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					