Local Rigidity of Diophantine Translations in Higher-dimensional Tori
- 作者: Karaliolios N.1
- 
							隶属关系: 
							- South Kensington Campus
 
- 期: 卷 23, 编号 1 (2018)
- 页面: 12-25
- 栏目: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218902
- DOI: https://doi.org/10.1134/S1560354718010021
- ID: 218902
如何引用文章
详细
We prove a theorem asserting that, given a Diophantine rotation α in a torus Td ≡ Rd/Zd, any perturbation, small enough in the C∞ topology, that does not destroy all orbits with rotation vector α is actually smoothly conjugate to the rigid rotation. The proof relies on a KAM scheme (named after Kolmogorov–Arnol’d–Moser), where at each step the existence of an invariant measure with rotation vector α assures that we can linearize the equations around the same rotation α. The proof of the convergence of the scheme is carried out in the C∞ category.
作者简介
Nikolaos Karaliolios
South Kensington Campus
							编辑信件的主要联系方式.
							Email: n.karaliolios@imperial.ac.uk
				                					                																			                												                	英国, 							London, SW7 2AZ						
补充文件
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  电邮这篇文章
			电邮这篇文章  开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					