Local Rigidity of Diophantine Translations in Higher-dimensional Tori


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We prove a theorem asserting that, given a Diophantine rotation α in a torus Td ≡ Rd/Zd, any perturbation, small enough in the C topology, that does not destroy all orbits with rotation vector α is actually smoothly conjugate to the rigid rotation. The proof relies on a KAM scheme (named after Kolmogorov–Arnol’d–Moser), where at each step the existence of an invariant measure with rotation vector α assures that we can linearize the equations around the same rotation α. The proof of the convergence of the scheme is carried out in the C category.

作者简介

Nikolaos Karaliolios

South Kensington Campus

编辑信件的主要联系方式.
Email: n.karaliolios@imperial.ac.uk
英国, London, SW7 2AZ

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018