Spiral chaos in the nonholonomic model of a Chaplygin top


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This paper presents a numerical study of the chaotic dynamics of a dynamically asymmetric unbalanced ball (Chaplygin top) rolling on a plane. It is well known that the dynamics of such a system reduces to the investigation of a three-dimensional map, which in the general case has no smooth invariant measure. It is shown that homoclinic strange attractors of discrete spiral type (discrete Shilnikov type attractors) arise in this model for certain parameters. From the viewpoint of physical motions, the trace of the contact point of a Chaplygin top on a plane is studied for the case where the phase trajectory sweeps out a discrete spiral attractor. Using the analysis of the trajectory of this trace, a conclusion is drawn about the influence of “strangeness” of the attractor on the motion pattern of the top.

作者简介

Alexey Borisov

Udmurt State University

编辑信件的主要联系方式.
Email: borisov@rcd.ru
俄罗斯联邦, ul. Universitetskaya 1, Izhevsk, 426034

Alexey Kazakov

National Research University Higher School of Economics

Email: borisov@rcd.ru
俄罗斯联邦, ul. Bolshaya Pecherskaya 25/12, Nizhny Novgorod, 603155

Igor Sataev

Udmurt State University; Institute of Radio Engineering and Electronics RAS

Email: borisov@rcd.ru
俄罗斯联邦, ul. Universitetskaya 1, Izhevsk, 426034; Saratov Branch ul. Zelenaya 38, Saratov, 410019

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016