The spatial problem of 2 bodies on a sphere. Reduction and stochasticity


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper, we consider in detail the 2-body problem in spaces of constant positive curvature S2 and S3. We perform a reduction (analogous to that in rigid body dynamics) after which the problem reduces to analysis of a two-degree-of-freedom system. In the general case, in canonical variables the Hamiltonian does not correspond to any natural mechanical system. In addition, in the general case, the absence of an analytic additional integral follows from the constructed Poincaré section. We also give a review of the historical development of celestial mechanics in spaces of constant curvature and formulate open problems.

作者简介

Alexey Borisov

Steklov Mathematical Institute

编辑信件的主要联系方式.
Email: borisov@rcd.ru
俄罗斯联邦, ul. Gubkina 8, Moscow, 119991

Ivan Mamaev

Steklov Mathematical Institute

Email: borisov@rcd.ru
俄罗斯联邦, ul. Gubkina 8, Moscow, 119991

Ivan Bizyaev

Steklov Mathematical Institute

Email: borisov@rcd.ru
俄罗斯联邦, ul. Gubkina 8, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016