The spatial problem of 2 bodies on a sphere. Reduction and stochasticity
- 作者: Borisov A.V.1, Mamaev I.S.1, Bizyaev I.A.1
- 
							隶属关系: 
							- Steklov Mathematical Institute
 
- 期: 卷 21, 编号 5 (2016)
- 页面: 556-580
- 栏目: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218372
- DOI: https://doi.org/10.1134/S1560354716050075
- ID: 218372
如何引用文章
详细
In this paper, we consider in detail the 2-body problem in spaces of constant positive curvature S2 and S3. We perform a reduction (analogous to that in rigid body dynamics) after which the problem reduces to analysis of a two-degree-of-freedom system. In the general case, in canonical variables the Hamiltonian does not correspond to any natural mechanical system. In addition, in the general case, the absence of an analytic additional integral follows from the constructed Poincaré section. We also give a review of the historical development of celestial mechanics in spaces of constant curvature and formulate open problems.
作者简介
Alexey Borisov
Steklov Mathematical Institute
							编辑信件的主要联系方式.
							Email: borisov@rcd.ru
				                					                																			                												                	俄罗斯联邦, 							ul. Gubkina 8, Moscow, 119991						
Ivan Mamaev
Steklov Mathematical Institute
														Email: borisov@rcd.ru
				                					                																			                												                	俄罗斯联邦, 							ul. Gubkina 8, Moscow, 119991						
Ivan Bizyaev
Steklov Mathematical Institute
														Email: borisov@rcd.ru
				                					                																			                												                	俄罗斯联邦, 							ul. Gubkina 8, Moscow, 119991						
补充文件
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  电邮这篇文章
			电邮这篇文章  开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					