Global structure and geodesics for Koenigs superintegrable systems


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We present a new derivation of the local structure of Koenigs metrics using a framework laid down by Matveev and Shevchishin. All of these dynamical systems allow for a potential preserving their superintegrability (SI) and most of them are shown to be globally defined on either ℝ2 or ℍ2. Their geodesic flows are easily determined thanks to their quadratic integrals. Using Carter (or minimal) quantization, we show that the formal SI is preserved at the quantum level and for two metrics, for which all of the geodesics are closed, it is even possible to compute the classical action variables and the point spectrum of the quantum Hamiltonian.

作者简介

Galliano Valent

Laboratoire de Physique Mathématique de Provence

编辑信件的主要联系方式.
Email: galliano.valent@orange.fr
法国, 19 bis Boulevard Emile Zola, Aix-en-Provence, F-13100

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016