Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 24, № 5 (2019)

Sergey Chaplygin Memorial Issue

Sergey Chaplygin. On the Occasion of his 150th Birthday

Regular and Chaotic Dynamics. 2019;24(5):447-449
pages 447-449 views

Integrability of the n-dimensional Axially Symmetric Chaplygin Sphere

García-Naranjo L.

Аннотация

We consider the n-dimensional Chaplygin sphere under the assumption that the mass distribution of the sphere is axisymmetric. We prove that, for initial conditions whose angular momentum about the contact point is vertical, the dynamics is quasi-periodic. For n = 4 we perform the reduction by the associated SO(3) symmetry and show that the reduced system is integrable by the Euler-Jacobi theorem.

Regular and Chaotic Dynamics. 2019;24(5):450-463
pages 450-463 views

Periodic Billiards Within Conics in the Minkowski Plane and Akhiezer Polynomials

Adabrah A., Dragović V., Radnović M.

Аннотация

We derive necessary and sufficient conditions for periodic and for elliptic periodic trajectories of billiards within an ellipse in the Minkowski plane in terms of an underlining elliptic curve. We provide several examples of periodic and elliptic periodic trajectories with small periods. We observe a relationship between Cayley-type conditions and discriminantly separable and factorizable polynomials. Equivalent conditions for periodicity and elliptic periodicity are derived in terms of polynomial-functional equations as well. The corresponding polynomials are related to the classical extremal polynomials. In particular, the light-like periodic trajectories are related to the classical Chebyshev polynomials. Similarities and differences with respect to the previously studied Euclidean case are highlighted.

Regular and Chaotic Dynamics. 2019;24(5):464-501
pages 464-501 views

On the Stability of the Regular Precession of an Asymmetric Gyroscope at a Second-order Resonance

Markeev A.

Аннотация

The motion of a rigid body about a fixed point in a homogeneous gravitational field is investigated. The body is not dynamically symmetric and its center of gravity lies on the perpendicular, raised from the fixed point, to one of the circular sections of an ellipsoid of inertia. A body with such mass geometry may precess regularly about a nonvertical axis (Grioli’s precession). The problem of the orbital stability of this precession is solved for critical cases of second-order resonance, when terms higher than degree four in the series expansion of the Hamiltonian of the perturbed motion should be taken into account.

Regular and Chaotic Dynamics. 2019;24(5):502-510
pages 502-510 views

Nonholonomic Noetherian Symmetries and Integrals of the Routh Sphere and the Chaplygin Ball

Bustamante M., Lynch P.

Аннотация

The dynamics of a spherical body with a non-uniform mass distribution rolling on a plane were discussed by Sergey Chaplygin, whose 150th birthday we celebrate this year. The Chaplygin top is a non-integrable system, with a colourful range of interesting motions. A special case of this system was studied by Edward Routh, who showed that it is integrable. The Routh sphere has a centre of mass offset from the geometric centre, but it has an axis of symmetry through both these points, and equal moments of inertia about all axes orthogonal to the symmetry axis. There are three constants of motion: the total energy and two quantities involving the angular momenta.

It is straightforward to demonstrate that these quantities, known as the Jellett and Routh constants, are integrals of the motion. However, their physical significance has not been fully understood. In this paper, we show how the integrals of the Routh sphere arise from Emmy Noether’s invariance identity. We derive expressions for the infinitesimal symmetry transformations associated with these constants. We find the finite version of these symmetries and provide their geometrical interpretation.

As a further demonstration of the power and utility of this method, we find the Noetherian symmetries and corresponding integrals for a system introduced recently, the Chaplygin ball on a rotating turntable, confirming that the known integrals are directly obtained from Noether’s theorem.

Regular and Chaotic Dynamics. 2019;24(5):511-524
pages 511-524 views

Reduction of a Hamilton — Jacobi Equation for Nonholonomic Systems

Esen O., Jiménez V., de León M., Sardón C.

Аннотация

We discuss, in all generality, the reduction of a Hamilton — Jacobi theory for systems subject to nonholonomic constraints and invariant under the action of a group of symmetries. We consider nonholonomic systems subject to both linear and nonlinear constraints and with different positioning of such constraints with respect to the symmetries.

Regular and Chaotic Dynamics. 2019;24(5):525-559
pages 525-559 views

Different Models of Rolling for a Robot Ball on a Plane as a Generalization of the Chaplygin Ball Problem

Bizyaev I., Borisov A., Mamaev I.

Аннотация

This paper addresses the problem of the rolling of a spherical shell with a frame rotating inside, on which rotors are fastened. It is assumed that the center of mass of the entire system is at the geometric center of the shell.

For the rubber rolling model and the classical rolling model it is shown that, if the angular velocities of rotation of the frame and the rotors are constant, then there exists a noninertial coordinate system (attached to the frame) in which the equations of motion do not depend explicitly on time. The resulting equations of motion preserve an analog of the angular momentum vector and are similar in form to the equations for the Chaplygin ball. Thus, the problem reduces to investigating a two-dimensional Poincaré map.

The case of the rubber rolling model is analyzed in detail. Numerical investigation of its Poincaré map shows the existence of chaotic trajectories, including those associated with a strange attractor. In addition, an analysis is made of the case of motion from rest, in which the problem reduces to investigating the vector field on the sphere S2.

Regular and Chaotic Dynamics. 2019;24(5):560-582
pages 560-582 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».