Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 22, № 1 (2017)

On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 2

On the classical and quantum integrability of systems of resonant oscillators

Marino M.

Аннотация

We study in this paper systems of harmonic oscillators with resonant frequencies. For these systems we present general procedures for the construction of sets of functionally independent constants of motion, which can be used for the definition of generalized actionangle variables, in accordance with the general description of degenerate integrable systems which was presented by Nekhoroshev in a seminal paper in 1972. We then apply to these classical integrable systems the procedure of quantization which has been proposed to the author by Nekhoroshev during his last years of activity at Milan University. This procedure is based on the construction of linear operators by means of the symmetrization of the classical constants of motion mentioned above.

For 3 oscillators with resonance 1: 1: 2, by using a computer program we have discovered an exceptional integrable system, which cannot be obtained with the standard methods based on the obvious symmetries of the Hamiltonian function. In this exceptional case, quantum integrability can be realized only by means of a modification of the symmetrization procedure.

Regular and Chaotic Dynamics. 2017;22(1):1-17
pages 1-17 views

Nekhoroshev theorem for perturbations of the central motion

Bambusi D., Fusè A.

Аннотация

In this paper we prove a Nekhoroshev type theorem for perturbations of Hamiltonians describing a particle subject to the force due to a central potential. Precisely, we prove that under an explicit condition on the potential, the Hamiltonian of the central motion is quasiconvex. Thus, when it is perturbed, two actions (the modulus of the total angular momentum and the action of the reduced radial system) are approximately conserved for times which are exponentially long with the inverse of the perturbation parameter.

Regular and Chaotic Dynamics. 2017;22(1):18-26
pages 18-26 views

Degenerate billiards in celestial mechanics

Bolotin S.

Аннотация

In an ordinary billiard trajectories of a Hamiltonian system are elastically reflected after a collision with a hypersurface (scatterer). If the scatterer is a submanifold of codimension more than one, we say that the billiard is degenerate. Degenerate billiards appear as limits of systems with singularities in celestial mechanics. We prove the existence of trajectories of such systems shadowing trajectories of the corresponding degenerate billiards. This research is motivated by the problem of second species solutions of Poincaré.

Regular and Chaotic Dynamics. 2017;22(1):27-53
pages 27-53 views

Secular dynamics of a planar model of the Sun-Jupiter-Saturn-Uranus system; effective stability in the light of Kolmogorov and Nekhoroshev theories

Giorgilli A., Locatelli U., Sansottera M.

Аннотация

We investigate the long-time stability of the Sun-Jupiter-Saturn-Uranus system by considering a planar secular model, which can be regarded as a major refinement of the approach first introduced by Lagrange. Indeed, concerning the planetary orbital revolutions, we improve the classical circular approximation by replacing it with a solution that is invariant up to order two in the masses; therefore, we investigate the stability of the secular system for rather small values of the eccentricities. First, we explicitly construct a Kolmogorov normal form to find an invariant KAM torus which approximates very well the secular orbits. Finally, we adapt the approach that underlies the analytic part of Nekhoroshev’s theorem to show that there is a neighborhood of that torus for which the estimated stability time is larger than the lifetime of the Solar System. The size of such a neighborhood, compared with the uncertainties of the astronomical observations, is about ten times smaller.

Regular and Chaotic Dynamics. 2017;22(1):54-77
pages 54-77 views

Arnold diffusion for a complete family of perturbations

Delshams A., Schaefer R.

Аннотация

In this work we illustrate the Arnold diffusion in a concrete example — the a priori unstable Hamiltonian system of 2 + 1/2 degrees of freedom H(p, q, I, φ, s) = p2/2+ cos q − 1 + I2/2 + h(q, φ, s; ε) — proving that for any small periodic perturbation of the form h(q, φ, s; ε) = ε cos q (a00 + a10 cosφ + a01 cos s) (a10a01 ≠ 0) there is global instability for the action. For the proof we apply a geometrical mechanism based on the so-called scattering map. This work has the following structure: In the first stage, for a more restricted case (I* ~ π/2μ, μ = a10/a01), we use only one scattering map, with a special property: the existence of simple paths of diffusion called highways. Later, in the general case we combine a scattering map with the inner map (inner dynamics) to prove the more general result (the existence of instability for any μ). The bifurcations of the scattering map are also studied as a function of μ. Finally, we give an estimate for the time of diffusion, and we show that this time is primarily the time spent under the scattering map.

Regular and Chaotic Dynamics. 2017;22(1):78-108
pages 78-108 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».