Topaj–Pikovsky Involution in the Hamiltonian Lattice of Locally Coupled Oscillators
- Авторы: Kruglov V.P.1,2,3, Kuznetsov S.P.1,2
-
Учреждения:
- Udmurt State University
- Kotelnikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch
- Steklov Mathematical Institute
- Выпуск: Том 24, № 6 (2019)
- Страницы: 725-738
- Раздел: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/219426
- DOI: https://doi.org/10.1134/S1560354719060108
- ID: 219426
Цитировать
Аннотация
We discuss the Hamiltonian model of an oscillator lattice with local coupling. The Hamiltonian model describes localized spatial modes of nonlinear the Schrödinger equation with periodic tilted potential. The Hamiltonian system manifests reversibility of the Topaj–Pikovsky phase oscillator lattice. Furthermore, the Hamiltonian system has invariant manifolds with asymptotic dynamics exactly equivalent to the Topaj–Pikovsky model. We examine the stability of trajectories belonging to invariant manifolds by means of numerical evaluation of Lyapunov exponents. We show that there is no contradiction between asymptotic dynamics on invariant manifolds and conservation of phase volume of the Hamiltonian system. We demonstrate the complexity of dynamics with results of numerical simulations.
Ключевые слова
Об авторах
Vyacheslav Kruglov
Udmurt State University; Kotelnikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch; Steklov Mathematical Institute
Автор, ответственный за переписку.
Email: kruglovyacheslav@gmail.com
Россия, ul. Universitetskaya 1, Izhevsk, 426034; ul. Zelenaya 38, Saratov, 410019; ul. Gubkina 8, Moscow, 119991
Sergey Kuznetsov
Udmurt State University; Kotelnikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch
Автор, ответственный за переписку.
Email: spkuz@yandex.ru
Россия, ul. Universitetskaya 1, Izhevsk, 426034; ul. Zelenaya 38, Saratov, 410019
Дополнительные файлы
