Exact Solutions and Integrability of the Duffing – Van der Pol Equation
- Авторы: Kudryashov N.A.1
- 
							Учреждения: 
							- Department of Applied Mathematics
 
- Выпуск: Том 23, № 4 (2018)
- Страницы: 471-479
- Раздел: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/219023
- DOI: https://doi.org/10.1134/S156035471804007X
- ID: 219023
Цитировать
Аннотация
The force-free Duffing–Van der Pol oscillator is considered. The truncated expansions for finding the solutions are used to look for exact solutions of this nonlinear ordinary differential equation. Conditions on parameter values of the equation are found to have the linearization of the Duffing–Van der Pol equation. The Painlevé test for this equation is used to study the integrability of the model. Exact solutions of this differential equation are found. In the special case the approach is simplified to demonstrate that some well-known methods can be used for finding exact solutions of nonlinear differential equations. The first integral of the Duffing–Van der Pol equation is found and the general solution of the equation is given in the special case for parameters of the equation. We also demonstrate the efficiency of the method for finding the first integral and the general solution for one of nonlinear second-order ordinary differential equations.
Об авторах
Nikolay Kudryashov
Department of Applied Mathematics
							Автор, ответственный за переписку.
							Email: nakudr@gmail.com
				                					                																			                												                	Россия, 							Kashirskoe sh. 31, Moscow, 115409						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					