The Second Term in the Asymptotics for the Number of Points Moving Along a Metric Graph
- Авторы: Chernyshev V.L.1, Tolchennikov A.A.2,3,4
- 
							Учреждения: 
							- National Research University Higher School of Economics
- M. V. Lomonosov Moscow State University
- Institute for Problems in Mechanics
- Moscow Institute of Physics and Technology
 
- Выпуск: Том 22, № 8 (2017)
- Страницы: 937-948
- Раздел: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218835
- DOI: https://doi.org/10.1134/S1560354717080032
- ID: 218835
Цитировать
Аннотация
We consider the problem of determining the asymptotics for the number of points moving along a metric graph. This problem is motivated by the problem of the evolution of wave packets, which at the initial moment of time are localized in a small neighborhood of one point. It turns out that the number of points, as a function of time, allows a polynomial approximation. This polynomial is expressed via Barnes’ multiple Bernoulli polynomials, which are related to the problem of counting the number of lattice points in expanding simplexes. In this paper we give explicit formulas for the first two terms of the expansion for the counting function of the number of moving points. The leading term was found earlier and depends only on the number of vertices, the number of edges and the lengths of the edges. The second term in the expansion shows what happens to the graph when one or two edges are removed. In particular, whether it breaks up into several connected components or not. In this paper, examples of the calculation of the leading and second terms are given.
Ключевые слова
Об авторах
Vsevolod Chernyshev
National Research University Higher School of Economics
							Автор, ответственный за переписку.
							Email: vchernyshev@hse.ru
				                					                																			                												                	Россия, 							ul. Myasnitskaya 20, Moscow, 101000						
Anton Tolchennikov
M. V. Lomonosov Moscow State University; Institute for Problems in Mechanics; Moscow Institute of Physics and Technology
														Email: vchernyshev@hse.ru
				                					                																			                												                	Россия, 							Leninskie Gory 1, Moscow, 119991; pr. Vernadskogo 101-1, Moscow, 119526; Institutskii per. 9, Dolgoprudnyi, 141700						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					