On the classical and quantum integrability of systems of resonant oscillators
- Авторы: Marino M.1
- 
							Учреждения: 
							- Dipartimento di Matematica
 
- Выпуск: Том 22, № 1 (2017)
- Страницы: 1-17
- Раздел: On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 2
- URL: https://ogarev-online.ru/1560-3547/article/view/218547
- DOI: https://doi.org/10.1134/S1560354717010014
- ID: 218547
Цитировать
Аннотация
We study in this paper systems of harmonic oscillators with resonant frequencies. For these systems we present general procedures for the construction of sets of functionally independent constants of motion, which can be used for the definition of generalized actionangle variables, in accordance with the general description of degenerate integrable systems which was presented by Nekhoroshev in a seminal paper in 1972. We then apply to these classical integrable systems the procedure of quantization which has been proposed to the author by Nekhoroshev during his last years of activity at Milan University. This procedure is based on the construction of linear operators by means of the symmetrization of the classical constants of motion mentioned above.
For 3 oscillators with resonance 1: 1: 2, by using a computer program we have discovered an exceptional integrable system, which cannot be obtained with the standard methods based on the obvious symmetries of the Hamiltonian function. In this exceptional case, quantum integrability can be realized only by means of a modification of the symmetrization procedure.
Об авторах
Massimo Marino
Dipartimento di Matematica
							Автор, ответственный за переписку.
							Email: massimomarino@tin.it
				                					                																			                												                	Италия, 							via Saldini 50, Milano, I-20133						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					