Combinatorial Ricci Flow for Degenerate Circle Packing Metrics
- Autores: Pepa R.Y.1, Popelensky T.Y.2
- 
							Afiliações: 
							- Moscow Institute of International Relations
- Faculty of Mechanics and Mathematics
 
- Edição: Volume 24, Nº 3 (2019)
- Páginas: 298-311
- Seção: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/219325
- DOI: https://doi.org/10.1134/S1560354719030043
- ID: 219325
Citar
Resumo
Chow and Luo [3] showed in 2003 that the combinatorial analogue of the Hamilton Ricci flow on surfaces converges under certain conditions to Thruston’s circle packing metric of constant curvature. The combinatorial setting includes weights defined for edges of a triangulation. A crucial assumption in [3] was that the weights are nonnegative. Recently we have shown that the same statement on convergence can be proved under a weaker condition: some weights can be negative and should satisfy certain inequalities [4].
On the other hand, for weights not satisfying conditions of Chow — Luo’s theorem we observed in numerical simulation a degeneration of the metric with certain regular behaviour patterns [5]. In this note we introduce degenerate circle packing metrics, and under weakened conditions on weights we prove that under certain assumptions for any initial metric an analogue of the combinatorial Ricci flow has a unique limit metric with a constant curvature outside of singularities.
Palavras-chave
Sobre autores
Ruslan Pepa
Moscow Institute of International Relations
							Autor responsável pela correspondência
							Email: pepa@physics.msu.ru
				                					                																			                												                	Rússia, 							pr. Vernadskogo 76, Moscow, 119454						
Theodore Popelensky
Faculty of Mechanics and Mathematics
							Autor responsável pela correspondência
							Email: popelens@mech.math.msu.su
				                					                																			                												                	Rússia, 							Leninskie Gory 1, Moscow, 119991						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					