Adaptive estimation of nonlinear parameters of a nonholonomic spherical robot using a modified fuzzy-based speed gradient algorithm
- Autores: Roozegar M.1, Mahjoob M.J.2, Ayati M.3
- 
							Afiliações: 
							- Centre for Intelligent Machines (CIM), Department of Mechanical Engineering
- Centre for Mechatronics and Intelligent Machines, School of Mechanical Engineering
- School of Mechanical Engineering
 
- Edição: Volume 22, Nº 3 (2017)
- Páginas: 226-238
- Seção: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218609
- DOI: https://doi.org/10.1134/S1560354717030030
- ID: 218609
Citar
Resumo
This paper deals with adaptive estimation of the unknown parameters and states of a pendulum-driven spherical robot (PDSR), which is a nonlinear in parameters (NLP) chaotic system with parametric uncertainties. Firstly, the mathematical model of the robot is deduced by applying the Newton–Euler methodology for a system of rigid bodies. Then, based on the speed gradient (SG) algorithm, the states and unknown parameters of the robot are estimated online for different step length gains and initial conditions. The estimated parameters are updated adaptively according to the error between estimated and true state values. Since the errors of the estimated states and parameters as well as the convergence rates depend significantly on the value of step length gain, this gain should be chosen optimally. Hence, a heuristic fuzzy logic controller is employed to adjust the gain adaptively. Simulation results indicate that the proposed approach is highly encouraging for identification of this NLP chaotic system even if the initial conditions change and the uncertainties increase; therefore, it is reliable to be implemented on a real robot.
Sobre autores
Mehdi Roozegar
Centre for Intelligent Machines (CIM), Department of Mechanical Engineering
							Autor responsável pela correspondência
							Email: roozegar@cim.mcgill.ca
				                					                																			                												                	Canadá, 							817 Sherbrooke St. West, Montréal, QC, H3A 0C3						
Mohammad Mahjoob
Centre for Mechatronics and Intelligent Machines, School of Mechanical Engineering
														Email: roozegar@cim.mcgill.ca
				                					                																			                												                	Irã, 							Kargar St. North, Tehran						
Moosa Ayati
School of Mechanical Engineering
														Email: roozegar@cim.mcgill.ca
				                					                																			                												                	Irã, 							Kargar St. North, Tehran						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					