Connecting orbits of Lagrangian systems in a nonstationary force field
- Autores: Ivanov A.V.1
- 
							Afiliações: 
							- Saint-Petersburg State University
 
- Edição: Volume 21, Nº 5 (2016)
- Páginas: 510-521
- Seção: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218353
- DOI: https://doi.org/10.1134/S1560354716050026
- ID: 218353
Citar
Resumo
We study connecting orbits of a natural Lagrangian system defined on a complete Riemannian manifold subjected to the action of a nonstationary force field with potential U(q, t) = f(t)V(q). It is assumed that the factor f(t) tends to ∞ as t→±∞ and vanishes at a unique point t0 ∈ ℝ. Let X+, X− denote the sets of isolated critical points of V (x) at which U(x, t) as a function of x distinguishes its maximum for any fixed t > t0 and t < t0, respectively. Under nondegeneracy conditions on points of X± we prove the existence of infinitely many doubly asymptotic trajectories connecting X− and X+.
Sobre autores
Alexey Ivanov
Saint-Petersburg State University
							Autor responsável pela correspondência
							Email: a.v.ivanov@spbu.ru
				                					                																			                												                	Rússia, 							Universitetskaya nab. 7/9, Saint-Petersburg, 199034						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					