Classical and Quantum Dynamics of a Particle in a Narrow Angle
- Авторлар: Dobrokhotov S.Y.1,2, Minenkov D.S.1,2, Neishtadt A.I.3,4, Shlosman S.B.5,6,7
- 
							Мекемелер: 
							- Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences (IP Mech RAS)
- Moscow Institute of Physics and Technology
- Space Research Institute
- Loughborough University
- Aix Marseille Univ, Universite de Toulon, CNRS, CPT
- Skolkovo Institute of Science and Technology
- Institute of the Information Transmission Problems
 
- Шығарылым: Том 24, № 6 (2019)
- Беттер: 704-716
- Бөлім: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/219416
- DOI: https://doi.org/10.1134/S156035471906008X
- ID: 219416
Дәйексөз келтіру
Аннотация
We consider the 2D Schrödinger equation with variable potential in the narrow domain diffeomorphic to the wedge with the Dirichlet boundary condition. The corresponding classical problem is the billiard in this domain. In general, the corresponding dynamical system is not integrable. The small angle is a small parameter which allows one to make the averaging and reduce the classical dynamical system to an integrable one modulo exponential small correction. We use the quantum adiabatic approximation (operator separation of variables) to construct the asymptotic eigenfunctions (quasi-modes) of the Schrödinger operator. We discuss the relation between classical averaging and constructed quasi-modes. The behavior of quasi-modes in the neighborhood of the cusp is studied. We also discuss the relation between Bessel and Airy functions that follows from different representations of asymptotics near the cusp.
Авторлар туралы
Sergei Dobrokhotov
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences (IP Mech RAS); Moscow Institute of Physics and Technology
							Хат алмасуға жауапты Автор.
							Email: dobr@ipmnet.ru
				                					                																			                												                	Ресей, 							prosp. Vernadskogo 101, Moscow, 119526; Institutskii per. 9, Dolgoprudnyi, 141701						
Dmitrii Minenkov
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences (IP Mech RAS); Moscow Institute of Physics and Technology
							Хат алмасуға жауапты Автор.
							Email: minenkov.ds@gmail.com
				                					                																			                												                	Ресей, 							prosp. Vernadskogo 101, Moscow, 119526; Institutskii per. 9, Dolgoprudnyi, 141701						
Anatoly Neishtadt
Space Research Institute; Loughborough University
							Хат алмасуға жауапты Автор.
							Email: a.neishtadt@lboro.ac.uk
				                					                																			                												                	Ресей, 							Profsoyuznaya ul. 84/32, Moscow, 117997; Epinal Way, Loughborough, Leicestershire						
Semen Shlosman
Aix Marseille Univ, Universite de Toulon, CNRS, CPT; Skolkovo Institute of Science and Technology; Institute of the Information Transmission Problems
							Хат алмасуға жауапты Автор.
							Email: shlosman@gmail.com
				                					                																			                												                	Франция, 							Marseille; Nobel ul. 3, Moscow, 121205; Bolshoy Karetny per. 19, Moscow, 127051						
Қосымша файлдар
 
				
			 
						 
						 
						 
					 
						 
									 
  
  
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу  Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді Тек жазылушылар үшін
		                                		                                        Тек жазылушылар үшін
		                                					