Dipole and Multipole Flows with Point Vortices and Vortex Sheets
- Авторлар: O’Neil K.A.1
- 
							Мекемелер: 
							- Department of Mathematics
 
- Шығарылым: Том 23, № 5 (2018)
- Беттер: 519-529
- Бөлім: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/219042
- DOI: https://doi.org/10.1134/S1560354718050039
- ID: 219042
Дәйексөз келтіру
Аннотация
An exact method is presented for obtaining uniformly translating distributions of vorticity in a two-dimensional ideal fluid, or equivalently, stationary distributions in the presence of a uniform background flow. These distributions are generalizations of the well-known vortex dipole and consist of a collection of point vortices and an equal number of bounded vortex sheets. Both the vorticity density of the vortex sheets and the velocity field of the fluid are expressed in terms of a simple rational function in which the point vortex positions and strengths appear as parameters. The vortex sheets lie on heteroclinic streamlines of the flow. Dipoles and multipoles that move parallel to a straight fluid boundary are also obtained. By setting the translation velocity to zero, equilibrium configurations of point vortices and vortex sheets are found.
Негізгі сөздер
Авторлар туралы
Kevin O’Neil
Department of Mathematics
							Хат алмасуға жауапты Автор.
							Email: koneil@utulsa.edu
				                					                																			                												                	АҚШ, 							800 Tucker Dr., Tulsa, OK, 74104						
Қосымша файлдар
 
				
			 
						 
						 
						 
					 
						 
									 
  
  
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу  Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді Тек жазылушылар үшін
		                                		                                        Тек жазылушылар үшін
		                                					