Equivariant Classification of bm-symplectic Surfaces
- Авторлар: Miranda E.1,2, Planas A.1
- 
							Мекемелер: 
							- BGSMath Laboratory of Geometry and Dynamical Systems, Department of Mathematics, EPSEB, Edifici P, UPC
- IMCCE, CNRS-UMR8028, Observatoire de Paris
 
- Шығарылым: Том 23, № 4 (2018)
- Беттер: 355-371
- Бөлім: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218997
- DOI: https://doi.org/10.1134/S1560354718040019
- ID: 218997
Дәйексөз келтіру
Аннотация
Inspired by Arnold’s classification of local Poisson structures [1] in the plane using the hierarchy of singularities of smooth functions, we consider the problem of global classification of Poisson structures on surfaces. Among the wide class of Poisson structures, we consider the class of bm-Poisson structures which can be also visualized using differential forms with singularities as bm-symplectic structures. In this paper we extend the classification scheme in [24] for bm-symplectic surfaces to the equivariant setting. When the compact group is the group of deck-transformations of an orientable covering, this yields the classification of these objects for nonorientable surfaces. The paper also includes recipes to construct bm-symplectic structures on surfaces. The feasibility of such constructions depends on orientability and on the colorability of an associated graph. The desingularization technique in [10] is revisited for surfaces and the compatibility with this classification scheme is analyzed in detail.
Негізгі сөздер
Авторлар туралы
Eva Miranda
BGSMath Laboratory of Geometry and Dynamical Systems, Department of Mathematics, EPSEB, Edifici P, UPC; IMCCE, CNRS-UMR8028, Observatoire de Paris
							Хат алмасуға жауапты Автор.
							Email: eva.miranda@upc.edu
				                					                																			                												                	Испания, 							Avinguda del Doctor Marañon 44–50, Barcelona, 08028; 77 Avenue Denfert-Rochereau, Paris, 75014						
Arnau Planas
BGSMath Laboratory of Geometry and Dynamical Systems, Department of Mathematics, EPSEB, Edifici P, UPC
														Email: eva.miranda@upc.edu
				                					                																			                												                	Испания, 							Avinguda del Doctor Marañon 44–50, Barcelona, 08028						
Қосымша файлдар
 
				
			 
						 
						 
						 
					 
						 
									 
  
  
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу  Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді Тек жазылушылар үшін
		                                		                                        Тек жазылушылар үшін
		                                					