Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 58, № 8 (2016)

Article

Empirical phengite geobarometer: Background, calibration, and application

Kamzolkin V., Ivanov S., Konilov A.

Аннотация

Phengite is a common metamorphic mineral stable in a wide pressure range. The dependence of pressure on silicon content established in the mid-20th century allowed us to propose a phengite-based geobarometer. Recently, the phengite geobarometer was calibrated by Caddik and Thompson (2008) but in the narrow pressure range. However, there attempts have been made to extend this range. We have analyzed the large number of published datasets on phengite composition. These data included both natural and experimental specimens of well defined P–T-conditions. For moderate temperatures (T < 750°C), two groups of phengite are identified. These groups are divided by silicon content value of 3.25 apfu. Different geobarometer equations were suggested for both groups. The precision of these geobarometers is ±0.34 GPa and ±0.56 GPa, respectively. There is no evidence of phengite used as a geobarometer at high temperatures (T > 750°C). The derived dependences were applied to study the conditions of gneiss and schist metamorphism of the Blyb metamorphic complex in the Northern Caucasus. This study shows that the peak pressure of gneiss and schist metamorphism is 2.0–2.2 ± 0.56 GPa. The latter agrees with previous data on the Blyb metamorphic complex.

Geology of Ore Deposits. 2016;58(8):613-622
pages 613-622 views

Find of anisotropic carbonic matter on a curve-faced diamond crystal

Brodskaya R., Golubev E., Isaenko S.

Аннотация

The study focuses on the identification and investigation of crystal-optical anisotropy phenomena observed on surfaces of a curve-faced diamond crystal found in alluvial sediments of the Lower Us’va River in Perm territory. Raman spectroscopy and atomic force microscopy show that interference of polarized light reflected from the tetrahexahedral faces of the diamond crystal is inspired by anisotropic carbonic matter, which appears as a film with graphene or nanographite structure and about 4 nm in thickness. The data allow us to suggest the formation conditions of curve-faced diamond crystals and origin of nanocrystalline carbonic matter on their faces.

Geology of Ore Deposits. 2016;58(8):623-627
pages 623-627 views

Scanning electron microscopy and Raman spectroscopy as combined methods for studying zoning in minerals: The case of spinels from Archean komatiites

Chazhengina S., Rybnikova Z., Svetov S.

Аннотация

Several types of both magmatic and metamorphic spinels have been found in Archean komatiites of the Sovdozero and Kostomuksha greenstone belts in the eastern part of the Fennoscandian Shield. Scanning electron microscopy and Raman spectroscopy revealed relics of cores of primary magmatic chrome-spinels with high Cr and Al contents. In the Sovdozero structure, the relics are better retained than those in the Kostomuksha structure, which is caused by a different degree of metamorphic transformation. The comparable 100 · Cr/(Al + Cr) values of spinel cores from Sovdozero and Kostomuksha reflect similar conditions of partitional melting in the mantle. These data agree with the fact that both komatiite complexes belong to the Al-undepleted petrogenic type. Wide variations in the Cr and Al contents in primary chrome-spinel cores together with a constant Mg/(Fe2+ + Mg) ratio correspond to low oxygen fugacity during magma crystallization. In general, the composition of these primary chrome-spinels is similar to that of accessory phases in peridotites from suprasubduction zones and agrees with hypothesis of komatiite complex formation in back-arc basins.

Geology of Ore Deposits. 2016;58(8):628-635
pages 628-635 views

Thermodynamics of arsenates, selenites and sulfates in the oxidation zone of sulfide ores: XII. Mineral equilibria in the Cd–Se–H2O system at 25°C

Charykova M., Vishnevsky A., Krivovichev V., Fokina E., Ivanova N., Platonova N., Semenova V.

Аннотация

Understanding the mechanisms of cadmium and selenium behavior under near-surface conditions is very important for solving certain environmental problems. The principal aim of this study is physicochemical analysis of the formation conditions of synthetic cadmium selenite CdSeO3 · H2O and experimental investigation of its thermal stability and dehydration and dissociation mechanisms. The synthesis was performed by boiling-dry aqueous solutions of cadmium nitrate and sodium selenite. The obtained samples were identified with electron microprobe and powder X-ray diffraction. Complex thermal analysis (thermogravimetry and differential scanning calorimetry) have shown that CdSeO3 · H2O is dehydrated at 177–241°C in two stages, apparently corresponding to the formation of CdSeO3 · 2/3H2O. The Eh–pH diagrams were calculated using the Geochemist’s Workbench (GWB 9.0) software package. The Eh–pH diagrams have been calculated for the Cd–Se–Н2О and Cd–Se–CO2–H2O systems for the average content of these elements in underground waters. The formation of cadmium selenite, CdSeO3 · H2O in the oxidation medium is quite possible. The existence of CdSeO3 is possible at high temperature.

Geology of Ore Deposits. 2016;58(8):636-645
pages 636-645 views

Chemical composition, isotopic U–Pb age, and source of zircon from polymineralic ichet’yu occurrence, Mobile Timan

Makeev A., Bayanova T., Borisovsky S., Zhilicheva O.

Аннотация

This study focuses on the morphological features, color cathodoluminescence, chemical composition, age, and source of zircons from the Ichet’yu occurrence. The isotopic U–Pb age of Paleo–Mezoproterozoic zircon grains varies within an interval of ~700 Ma from 2247 to 1478 Ma. The average roundness and well-preserved integrity of zircon grains allow us to suggest their proximal source. The available data show that the basement of the Middle Timan, composed of continental Paleo–Mezoproterozoic igneous rocks, is the most probable source of zircon in the Ichet’yu occurrence. These rocks are apparently a continuation of the Archean–Proterozoic Arkhangel’sk Mobile Belt.

Geology of Ore Deposits. 2016;58(8):646-652
pages 646-652 views

New Minerals, Classification, and Nomenclature of Minerals

Tatarinovite Са3Al(SO4)[В(ОH)4](ОH)6 · 12H2O, a new ettringite-group mineral from the Bazhenovskoe deposit, Middle Urals, Russia, and its crystal structure

Chukanov N., Loskutov A., Bychkova Y., Varlamov D., Pekov I., Pautov L., Britvin S., Zubkova N., Kasatkin A., Novgorodova E.

Аннотация

A new mineral, tatarinovite, ideally Са3Аl(SO4)[В(ОН)4](ОН)6 · 12Н2O, has been found in cavities of rhodingites at the Bazhenovskoe chrysotile asbestos deposit, Middle Urals, Russia. It occurs (1) colorless, with vitreous luster, bipyramidal crystals up to 1 mm across in cavities within massive diopside, in association with xonotlite, clinochlore, pectolite and calcite, and (2) as white granular aggregates up to 5 mm in size on grossular with pectolite, diopside, calcite, and xonotlite. The Mohs hardness is 3; perfect cleavage on (100) is observed. Dmeas = 1.79(1), Dcalc = 1.777 g/cm3. Tatarinovite is optically uniaxial (+), ω = 1.475(2), ε = 1.496(2). The IR spectrum contains characteristic bands of SO42−, CO32−, B(OH)4, B(OH)3, Al(OH)63-, Si(OH)62-, OH, and H2O. The chemical composition of tatarinovite (wt %; ICP-AES; H2O was determined by the Alimarin method; CO2 was determined by selective sorption on askarite) is as follows: 27.40 CaO, 4.06 B2O3, 6.34 A12O3, 0.03 Fe2O3, 2.43 SiO2, 8.48 SO3, 4.2 CO2, 46.1 H2O, total is 99.04. The empirical formula (calculated on the basis of 3Ca apfu) is H31.41Ca3.00(Al0.76Si0.25)Σ1.01 · (B0.72S0.65C0.591.96O24.55. Tatarinovite is hexagonal, space gr. P63, a = 11.1110(4) Å, c = 10.6294(6) Å, V = 1136.44(9) A3, Z = 2. Its crystal chemical formula is Са3(Аl0.70Si0.30) · {[SO4]0.34[В(ОН)4]0.33[СO3]0.24}{[SO4]0.30[В(ОН)4]0.34[СО3]0.30[В(ОН)3]0.06}(ОН5·73О0.27) · 12Н2O. The strongest reflections of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are 9.63 (100) (100), 5.556 (30) (110), 4.654 (14) (102), 3.841 (21) (112), 3.441 (12) (211), 2.746 (10) (302), 2.538 (12) (213). Tatarinovite was named in memory of the Russian geologist and petrologist Pavel Mikhailovich Tatarinov (1895–1976), a well-known specialist in chrysotile asbestos deposits. Type specimens have been deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow.

Geology of Ore Deposits. 2016;58(8):653-665
pages 653-665 views

Dachiardite-K, (K2Ca)(Al4Si20O48) · 13H2O, a new zeolite from Eastern Rhodopes, Bulgaria

Chukanov N., Encheva S., Petrov P., Pekov I., Belakovskiy D., Britvin S., Aksenov S.

Аннотация

Dachiardite-K (IMA No. 2015-041), a new zeolite, is a K-dominant member of the dachiardite series with the idealized formula (К2Са)(Al4Si20O48) · 13H2О. It occurs in the walls of opal–chalcedony veinlets cutting hydrothermally altered effusive rocks of the Zvezdel paleovolcanic complex near the village of Austa, Momchilgrad Municipality, Eastern Rhodopes, Bulgaria. Chalcedony, opal, dachiardite-Ca, dachiardite-Na, ferrierite-Mg, ferrierite-K, clinoptilolite-Ca, clinoptilolite-K, mordenite, smectite, celadonite, calcite, and barite are associated minerals. The mineral forms radiated aggregates up to 8 mm in diameter consisting of split acicular individuals. Dachiardite-K is white to colorless. Perfect cleavage is observed on (100). Dmeas = 2.18(2), Dcalc = 2.169 g/cm3. The IR spectrum is given. Dachiardite-K is biaxial (+), α = 1.477 (calc), β = 1.478(2), γ = 1.481(2), 2Vmeas = 65(10)°. The chemical composition (electron microprobe, mean of six point analyses, H2O determined by gravimetric method) is as follows, wt %: 4.51 K2O, 3.27 CaO, 0.41 BaO, 10.36 A12O3, 67.90 SiO2, 13.2 H2O, total is 99.65. The empirical formula is H26.23K1.71Ca1.04Ba0.05Al3.64Si20.24O61. The strongest reflections in the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 9.76 (24) (001), 8.85 (58) (200), 4.870 (59) (002), 3.807 (16) (202), 3.768 (20) (112, 020), 3.457 (100) (220), 2.966 (17) (602). Dachiardite-K is monoclinic, space gr. C2/m, Cm or C2; the unit cell parameters refined from the powder X-ray diffraction data are: a = 18.670(8), b = 7.511(3), c = 10.231(4) Å, β = 107.79(3)°, V= 1366(1) Å3, Z = 1. The type specimen has been deposited in the Earth and Man National Museum, Sofia, Bulgaria, with the registration number 23927.

Geology of Ore Deposits. 2016;58(8):666-673
pages 666-673 views

Minerals and Mineral Assemblages

Allanite-(Y) and allanite-(Ce) paragenesis in tourmalinite of the Severnyi pluton, Chukchi Peninsula, and the relationship between yttrium and lanthanides in allanite

Alekseev V., Marin Y., Gembitskaya I.

Аннотация

The morphology, optical properties, and composition of allanite-(Ce) and allanite-(Y) from raremetal tourmalinite of the Severnyi granitic pluton in the Chukchi Peninsula have been studied, as well as the composition and structure of host metasomatic rocks and the assemblage of rock-forming and accessory minerals. The hydrothermal origin of both allanite species and their stable combination have been established. Allanite-(Y) is partly replaced with allanite-(Ce), and metasomatic rims 2–10 μm wide enriched in LREE around allanite-(Y) have been identified. The degree of isomorphic Y+HREE substitution for LREE is estimated at 16%, on average; the maximum (Y+HREE)/LREE ratio does not exceed 0.25. It is assumed that the transition of allanite-(Y) into allanite-(Ce) might be caused by anincrease in acidity and decrease in aqueous fluid temperature at the late stage of the hydrothermal process.

Geology of Ore Deposits. 2016;58(8):674-680
pages 674-680 views

New data on REE and rare-metal mineralization in pegmatites of the Slyudyanogorsk muscovite deposit in the Southern Urals

Popova V., Muftakhov V., Popov V., Blinov I., Kotlyarov V.

Аннотация

The Slyudyangorsk muscovite deposit in the southern Urals was explored and mined in 1926–1957. By the mid-1950s, 104 veins of quartz–feldspar pegmatites including 21 muscovite-bearing veins have been found. Pegmatites with giant black Y-bearing epidote crystals are crosscut by veins with giant muscovite crystals, which, in turn, are intersected by veins of two-mica–quartz–two-feldspar pegmatites with rare-metal and REE mineralization. Microprobe data on compositions of complex Ti–Ta–Nb oxides [fergusonite-(Y), samarskite-(Y), euxenite-(Y), polycrase-(Y), columbite-(Fe), pyrochlore supergroup] are characterized, as well as of uraninite, ilmenorutile, scheelite, Y-bearing epidote, certain sulfides and rock-forming minerals from the Slyudyanogorsk deposit. The morphology and interrelation of minerals indicate that they are the result of crystal growth in cavities rather than of metasomatic replacement of gneisses, as has been suggested earlier. Thus, it is more promising for rare-metal and REE minerals in the Slyudorudnik area to be found in igneous rocks (granitic muscovite–quartz–feldspar pegmatites with the Nb–Ta–Ti–Y–U–W–Mo mineralization) than in metasomatic rocks.

Geology of Ore Deposits. 2016;58(8):681-690
pages 681-690 views

Unusual shape of pyrrhotite inclusions in scapolite of igneous rocks from the southernern Urals

Korinevsky V., Korinevsky E.

Аннотация

The unique igneous rock (scapolite–diopside gabbro) from the Ilmeny Mountains in the southern Urals is described. Gabbro fills a segment of dike 1.3 m thick that cuts through calcite–dolomite carbonatite. Medium-grain pyroxenite with scapolite that occurs at selvages gradually passes to scapolite-bearing gabbro in the central part of the dike. Scapolite crystals display surfaces of concurrent growth, which are evidence of their magmatic origin. Scapolite (Me 63–70%) contains numerous pyrrhotite inclusions as platelets 0.001 mm thick oriented parallel to the cleavage plane {100}. The calculated pyrrhotite formula is consistent with its stoichiometry (Fe1–xS). The morphology of the platelets (hexagonal sections) and their optical properties indicate a hexagonal symmetry of pyrrhotite. As follows from the insignificant difference between scapolite grains with and without pyrrhotite inclusions, scapolite and pyrrhotite should be regarded as products of synchronous magmatic melt crystallization.

Geology of Ore Deposits. 2016;58(8):691-696
pages 691-696 views

Chrome spinels and accessory mineralization in the weathering crust of the Vladimir deposit, Varshavsky ultramafic massif, southern Urals

Ankushev M., Zaykov V., Kotlyarov V., Romanenko M.

Аннотация

The paper presents the characteristics of chrome spinels from an ore-bearing packet of the Vladimir chromite deposit. Three main types of chrome spinels are distinguished by morphology and chemical composition: medium-chrome ore-forming, high-chrome transformed, and low-chrome relict accessory. The significant role of weathering conditions is expressed in alteration of accessory chrome spinel. The formation of high-chrome spinels is explained by the hydrothermal effect of the Varshavsky granitoid massif with accompanying dikes and talc–carbonate metasomatic rocks. Characteristic accessory minerals are represented by native gold and nickel, millerite, pentlandite, chalcopyrite, maucherite, PGE sulfides, and picroilmenite.

Geology of Ore Deposits. 2016;58(8):697-710
pages 697-710 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».