Products of Commutators on a General Linear Group Over a Division Algebra
- 作者: Egorchenkova E.A.1, Gordeev N.L.1
-
隶属关系:
- Russian State Pedagogical University
- 期: 卷 243, 编号 4 (2019)
- 页面: 561-572
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/243116
- DOI: https://doi.org/10.1007/s10958-019-04556-8
- ID: 243116
如何引用文章
详细
The word maps \( \tilde{w}:\kern0.5em {\mathrm{GL}}_m{(D)}^{2k}\to {\mathrm{GL}}_n(D) \) and \( \tilde{w}:\kern0.5em {D}^{\ast 2k}\to {D}^{\ast } \) for a word \( w=\prod \limits_{i=1}^k\left[{x}_i,{y}_i\right], \) where D is a division algebra over a field K, are considered. It is proved that if \( \tilde{w}\left({D}^{\ast 2k}\right)=\left[{D}^{\ast },{D}^{\ast}\right], \) then \( \tilde{w}\left({\mathrm{GL}}_n(D)\right)\supset {E}_n(D)\backslash Z\left({E}_n(D)\right), \) where En(D) is the subgroup of GLn(D), generated by transvections, and Z(En(D)) is its center. Furthermore if, in addition, n > 2, then \( \tilde{w}\left({E}_n(D)\right)\supset {E}_n(D)\backslash Z\left({E}_n(D)\right). \) The proof of the result is based on an analog of the “Gauss decomposition with prescribed semisimple part” (introduced and studied in two papers of the second author with collaborators) in the case of the group GLn(D), which is also considered in the present paper.
作者简介
E. Egorchenkova
Russian State Pedagogical University
编辑信件的主要联系方式.
Email: e-egorchenkova@mail.ru
俄罗斯联邦, St.Petersburg
N. Gordeev
Russian State Pedagogical University
编辑信件的主要联系方式.
Email: nickgordeev@mail.ru
俄罗斯联邦, St.Petersburg
补充文件
