On the Application of the Matrix Formalism for the Heat Kernel to Number Theory


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Earlier, in the study of combinatorial properties of the heat kernel of the Laplace operator with covariant derivative, a diagram technique and matrix formalism were constructed. In particular, the obtained formalism allows one to control the coefficients of the heat kernel, which is useful for calculations. In this paper, we consider a simple case with an Abelian connection in the two-dimensional space. This model allows us to give a mathematical description of the operators and find a relation between these operators and generating functions of numbers.

作者简介

A. Ivanov

St. Petersburg Department of Steklov Institute of Mathematics

编辑信件的主要联系方式.
Email: regul1@mail.ru
俄罗斯联邦, St. Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019