A Rational Criterion for Congruence of Square Matrices


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

With a square complex matrix A the matrix pair consisting of its symmetric S(A) = (A + AT)/2 and skew-symmetric K(A) = (AAT)/2 parts is associated. It is shown that square matrices A and B are congruent if and only if the associated pairs (S(A), K(A)) and (S(B), K(B)) are (strictly) equivalent. This criterion can be verified by a rational calculation, provided that the entries of A and B are rational or rational Gaussian numbers.

作者简介

Kh. Ikramov

Moscow Lomonosov State University

编辑信件的主要联系方式.
Email: ikramov@cs.msu.su
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019