Estimating Parameters of a Directed Weighted Graph Model with Beta-Distributed Edge-Weights


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We introduce a directed, weighted random graph model, where the edge-weights are independent and beta distributed with parameters depending on their endpoints. We will show that the row- and column-sums of the transformed edge-weight matrix are sufficient statistics for the parameters, and use the theory of exponential families to prove that the ML estimate of the parameters exists and is unique. Then an algorithm to find this estimate is introduced together with convergence proof that uses properties of the digamma function. Simulation results and applications are also presented.

作者简介

M. Bolla

Institute of Mathematics, Budapest University of Technology and Economics

编辑信件的主要联系方式.
Email: marib@math.bme.hu
匈牙利, Budapest

J. Mala

Institute of Mathematics, Budapest University of Technology and Economics; Institute of Mathematics, ELTE Eötvös Loránd University

Email: marib@math.bme.hu
匈牙利, Budapest; Budapest

A. Elbanna

Institute of Mathematics, Budapest University of Technology and Economics; Faculty of Science, Mathenmatics Department, Tanta University

Email: marib@math.bme.hu
匈牙利, Budapest; Tanta

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019